

Authorized adaptation from the United States edition, entived Digital Fundamentals, Sth Edition,
ISBN: §780130942005 by Floyd, Thomas L., published by Pearson Education. Inc., Copyright © 2003

Indian Subcontinent Adaptation
Copyright © 2006 Dorling Kindersley (India) Pvt. Ltd

Copyright © 2005 by Pearson Education (Singapore) Pre. Ltd

This book s sold subject 1o the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out or otherwise circulated without the publisher’s prior written cmsenl m any form of binding or
cover other than that in which it is published without & similar condi this condition being
imposed on subsequent purchaser and without limiting the rights under copyright reserved above, no
part of this publication may be mpmdllceﬂ, swrsd |r.| cr mrmduocd into a retricval system, or transmitled
in any form or by any means | 2. ding or otherwise), without the
prior written p of both the igh uwna'and""" joned p ublist of this book.

ISBN 978-81-7758-763-0

First Impression, 2006
Second Impression, 2007
Third Impression

Fourth Impression, 2008
Fifth Impression

Sixth Impression

Seventh Impression, 2009
Eighth Impression, 2009

This editien Is manufactured in India and is authorized for sale only in India. Bangladesh, Bhutan,
Pakistan, Nepal, Sri Lanka and the Maldives,

Published by Dorling Kindersley (India) Pvi. Litd,, licensecs of Pearson Education in South Asia.

Head Office: 482 FIE, Patparganj, Delhi 110 092, India.
Registered Office: 14 Local Shopping Centre, Panchsheel Park, New Delhi 110017, India.

Printed in India at Anand Sons.

Brief Contents

1 Introductory Digital Concept 8 Counters 304
2 Number Systems, Operations, 9 shift Registers 354
and Codes 16

10 Memory and Storage 390

3 LogicGates 78
11 Integrated Circuit Technologies 452

B

4 Boolean Algebra and
~Togic Sinpiication 118 12_Programmable Logic Devices (PLDS) 502

5 Combinational Logic 172 Answers to Odd-Numbered
Problems 552

6 F ions of Combinational Logic 202
Glossary 570

7 Fiip-Flops 266

-_Intnuducm Digital Concepts o

Chapter Objectives
Introduction

1-1 Digital and Analo,
1-2 Bi Digits, Logic Levels, and Digital
Woveforms 3
1-3 Introduction to Basic Logic
1-4 Digital Integrated Circuits 11
Summary 12
Sell-Test 12

antities

rations 9

Answers 15

i rviews 1S
Supplementary Problems for Examples 15
Self-Test 15

- Number Systems, Operations, and Cedes 16

Chapter Objectives
Introduction

2-2 Ei Numbers 18
2-3 Decimal-to-Bin

¢ Conversion 21

2-4 Binary Arithmetic 23
2-5 1's and 2's Complements of Bin.

26 Signed Numbers 29
2-7 Arithmetic Operations with Signed Numbers 35

Section Reviews 75

Supplementary Problems for Examples 17
Self-Test 77

Chapter Objectives

EEREERL

Supplementary Problems for Evamples 115
Self-Test N7

n Boolean Algebra and Logic Simplification 118

Chapter Objectives

Introduction
4-1 _ Boolean Operations and Expressions 118
42 Laws and Rules of Boolean Algebra 120
43 DeMorgan's Theorems 125
4=4 Hoolean Analysis of ic Circuits 129
45 Simplification Using Boolean Algebra 131
46 Standand Forms of Boolean Expressions 134
4-7 Boolean Expressions and Truth Tables 140
4 The Karnaugh Map 144
49 Karmaugh Map SOP Minimizaion 146
410 Kamaugh Map POS Minimization 155

W W

=l

&

£ EEL

A

6

EEECREDNLERE

CONTENTS

Five-Variable Karnaugh Maps 159
Summary 162
SplfeTest 162
Problems 163
Answers 169
Supplementary Problems for Examples
Self-Test 171

170

Combinational Logic
Chapter Objectives

Introduction

Basic Combinational Logic Circuits 172
Implementing Combinational Logic 177
The Universal Property of NAND and NOR
Gates 183

Combinational Logic Using NAND and NOR
Gawes 185

Logic Circuit Operation with Pulse

Wavefomms 191
Summary 194
Self-Test 195
Brohlems 196
Answers 200

Sectio i Ad 2ix)

Supplementary Problems for Evamples 201
Self-Test 204

Functions of Combi 202

tional Logic
Chapter Objectives

Introduction

Basic Overview of Logic Functions 202
Basic Adders 208

Parallel Binary Adders 211
Comparators 218

Decoders 222

Encoders 231

‘:ﬂfh' !l‘:ﬂ':ﬂl'ﬂ' ‘|3ﬂ

Multiplexers {Data Selectors) 238
Demultiplexers 247

Parity Generators/Checkers 248
Gilitehes in Decoder Circuits 251

Supplementary Problems for Examples 263
Self-Test 265

Chapter Objectives
Introduction

I=l__Latches 266
7-2 Edpe-Triggered Flip-Flops 273

7-3

74 Aip-Flo

7-5

REREECE

Master-Slave Flip-Flops 285
rating Characteristics
290

287
Flip-Flop Applications
Summary 295
Self-Tes 295
Problems 296
Answers 301

Section Reviews 301

Supplementary Problems for Examples 302

Self-Test 303

C 04
Chapter Objectives

Introduction

Asynch Counter O 305
Synchronous Counter ration 313

Up/Mown Synchronous Counters 320
Design of Synchronous Counters 324
Cascaded Counters 333
Counter Decoding 336

Counter Applications 340
Summary 345
Self-Test 346
Problems 347
Answers 35]

views 3

Supplementary Problems for Evamples 352
Seff-Tesr 153

. Shift Registers

Chapter Objectives

Introduction

Basic Shift Register Functions 354

Serial InfSerial Qut Shift Registers 356
Serial In/Paralle]l Out Shift Registers 360
Parallel InfSerial Out Shift Registers 363
Parallel In/Parallel Out Shift Registers 366
Bidirectional Shift Registers 368

Shift Register Counters 371

Shift Register Applications 375
Summary 382

Self-Tesr IR
Problems 383
Answers 387
ion Reviews 387
Supplementary Problems for Exa
Self-Test 389

-M__. IR -

Chapter Objectives
Introduction
Basics of Semiconductor Memory 390
Random-Access Memories (RAMs) 394
Read-Only Memories (ROMs) 407
Programmable ROMs (PROMs and
EPROMs) 412
Flash Memories 416
Memory Expansion 420
Special Types of Memories 426
Magnetic and Optical Storage 432
Testing Memory Chips 438
Summary 443
Self-Test 444
EBroblems 445
Answers 450
Secrion Reviews 450
Supplementary Problems for Examples 451
Self-Test 451

B 1ntcgrated Circuit Technologies

354

EEERREERE

les 388

EEEEE EEEE

ives

EE EREE EE

CONTENTS ® i

[ntroduction
Basics of Digital Integrated Circuits 453
Hasic ational Characteristics and
Parameters 46]
CMOS Cireni 17
TTL Circuits 475
Practical Considerstions in the Liee of TTL 430
Comparisen of CMOS and TTL
Performance 487
Emitter-Coupled Logic (ECL) Circuits 488
PMOS, NMOS, and F'CMOS 489
Summary 492
Self-Test 497
Problems 493
Apswers 490
Supplementary Problenis for Exaniples
Self-Test 301

ikt

Prog ble Logic Devices (PLDs) 502

EEEEEEE £ E

Chapter Objectives
Intrainction

Introduction to Programmable Logic Devices
(PLDs) 502

Simple Programmable Logic Devices
(SPLDs) S04

Programmable Array Logic (PAL) 507
Basic Concepts of GAL 513
Programming of SPLDs 517

ek)

Supplementary Problems for Examples 551
Self-Test 551

Answers to Odd-Numbered Problems 552
Glossary 570
lndex 57%

INTRODUCTORY DIGITAL
CONCEPTS

CHAPTER OBJECTIVES INTRODUCTION

Explain the basic differences between digital and analog The term digital is derived from the way computers perform
quantities openations, by counting digits. For many years, applications
- o of digital electronics were confined to computer systems.
St hovveltage kel e uned to teprRicnt clghal quintives Today, digital technology is applied in a wide range of areas
= Describe various parameters of a pubie waveform such as rite in addition to P Such applications as ision,
time, fall time, pulse width, frequency, period, and duty cycle c ications systems, radar, navigation and guidance
systems, military systems, medical instrumentation, industrial
process control, and consumer electronics use digital
Describe integrated circuit (IC), DIP, IC package for fixed techniques, Digital technology has progressed from vacuum-
function ICs, and pin numbering tube circuits to discrete transistors to complex integrated
circuits, some of which contain millions of transistors.
This chapter introduces you to digital electronics and
provides a broad overview of many important concepts.

= Explain the basic logic operations of NOT, AND, and OR

1-1 DIGITAL AND ANALOG QUANTITIES

Electronic circuits can be divided into two broad categories: digital and analog. Digital elec-
tronics involves quantities with discrete values, and analog electronics involves quantities
with continuous values. Although you will be studying digital fundamentals in this book,
you should also know about analog because many applications require both.

After completing this section, you should be able to

s Defing analpg = Define digital » Explain the difference between digital and analog
quantities ® State the advantages of digital over analog ® Give examples of how digital
and analog quantities are used in clectronics

An analog® quantity is one having continuous values, A digital quantity is one having a
discrete set of values, Most things that can be measured quantitatively appear in nature in ana-
log form. For example, the air temperature changes over a continwous range of values. During

*All bald terms arc important and are defined in the end-of-boak gloswary.

—

INTRODUCTORY DIGITAL CONCEPTS = 1

a given day, the temperature does not go from, say, 707 to 717 instantaneously; it takes on all
the infinite values in between. If you graphed the temperature on a typical summer day, you
would have a smooth, continuous curve similar to the curve in Figure 1-1. Other examples of
analog quantities are time, pressure, distance, and sound.

*FIGURE 1-1

Graph of an analog quantity Ll
(temperature versus time) TI7) — I .
08 =1 ' !
W0
8 b=
8 {
78 S |
0 = ey
Ll 11 Time of day
123456 (VI k)
AL
Rather than graphing the temp ona i basis, suppose you just take a tem-
perature reading every hour, Now, you have pled values rep ing the f at
discrete points in time (every hour) over a 24-hour period, as indicated in Figure 1-2. You
have effectively converted an analog quantity to a form that can now be digitized by represent-
ing each sampled value by a digital code. It is important to realize that Figure 1-2 itself is not
the digital representation of the analog quantity. In the digital reg ion each dot will be
represented by a series of 1s and Os.
» FIGURE 1-2 T
Sampled-value representation P
(quantization) of the analog 100 —7 T T T T
ntity in Figure 11 - |
s W a3] 1 Q * |0 T - |
90 S '._',..1_.!.."’,‘ L
[| BERE I
. ST
50 1 T 11 I . 2
| IEEEREEREE
7 : it } =111 -#
AEEEERN | ' .
0 -.|]"[-r'-‘.|:’
I HEERE [l p
e of day
GMMMNIZL Y45 6T 8GN
™.
The Digital Ad ge Digital rep ion has certain ad over analog rep

tation in electronics applications. For one thing, digital data can be processed and transmitied
more efficiently and reliably than analog data. Also, digital data has a great advantage when
storage is necessary. For example, music when converted to digital form can be stored more
compactly and reproduced with greater accuracy and clarity than is possible when it is in
analog form. Noise (unwanted voltage fluctuations) does not affect digital data nearly as much
as it does analog signals,

2 = DIGITAL FUNDAMENTALS

* FIGURE 1-3

A basic audio public addrens
spitem

An Analog Electronic System
A public address system, used to amplify sound so that it can be heard by a large audience, is
one ple of an application of analog el ics. The basic diagram in Figure 1-3 illus-

trates that sound waves, which are analog in nature, are picked up by a microphone and con-
verted to a small analog voltage called the audio signal. This voltage varies continuously as
the volume and frequency of the sound cha.n,gn and i s npplued to the input of a linear ampli-
fier. The output of the lifier, which is an ion of input vollage, goes o
the speaker(s). The speaker changes the amplified audio 515_:ml back to sound waves that have
amuch greater volume than the original sound waves picked up by the microphone.

Original soumd waves

—_— Linear amglifier - 1
Audio signal i ,} /)

Amplified asdio signal

A System Using Digital and Analog Methods

The compact disk (CD) player is an example of a system in which both digital and analog cir-
cuits are used. The simplified diagram in Figure 14 illustrates the basic principle of a CD
player.

Music in digital form is stored on the compact disk. A laser diode optical system picks up
the digital data from the rotating disk and transfers it to the digital-to-analog converter
(DAC). The DAC changes the digital data into an analog signal, that is an electrical reproduc-
tion of the original music. This signal is amplified and sent to the speaker for you to enjoy.
When the music was originally recorded on the CD, a process, essentially the reverse of the
one described here, using an analog-to-digital converter (ADC) was used.

_.r"\'.e‘;-'L‘r\l %\\

Digital-to-analog i Linear amplifier |4 .')
converter Analog /)
ul'mnsic audio Speaker //)

signal

& FIGURE 1-4
Basic principle of a CD player

INTRODUCTORY DIGITAL CONCEPTS ® 3

SECTION 1-1
IRE\'IEW 1. Define analog.

Answen are at the end 2. Define digital.

of the chapter. 3. Explain the difference between a digital quantity and an analog quantity.

4. Give an example of a system that is analog and one that is a combination of both digital

and analog. Name a qrmm that is entirely digital.

_|BINARY DIGITS, LOGIC LEVELS, AND DIGITAL WAVEFORMS

Digital electronics involves circuits and systems in which there are only two possible states.
These states are represented by two different voltage levels: A HIGH and a LOW. The two
states can also be represented by cumrent levels, open and closed switches, or lamps turned
on and off. In digital systems. such as computers, wm.hiwluns of the two states, called
codes, are used 1o ref bols, alphabetic cf and other types of
information. The two-state number sy‘uem is called binary, and its two digits are 0 and 1.

A binary digit is called a bir.

After completing this section, you should be able to

® Define binary ® Define bit @ Name the bits in a binary system = Explain how volt-
age levels are used to represent bits = Explain how voltage levels are interpreted by a digi-
tal circuit ® Describe the general characteristics of a pulse ® Determine the amplitude,
rise time, fall time, and width of a pulse » Identify and describe the characteristics of a
digital i = D ine the amplitude, period, freg) and duty cycle of a digital
waveform ® Explain what a timing diagram is and state its purpose ® Explain serial and
parallel data transfer and state the advantage and disadvantage of each

Binary Digits
The two digits in the binary system, 1 and 0, are called bits. which is a contraction of the
words binary digir. In digital circuits, two different voltage levels are used to represent the two
bits. Generally, 1 is represented by the higher voltage, which we will refer to as a HIGH, and a
0 is represented by the Jower voltage level, which we will refer to as a LOW. This is called
positive logic and will be used throughout the book,
HIGH=1 and LOW=0

Another system in which a 1 is represented by a LOW and a 0 is represented by a HIGH is
called negarive logic.

Groups of bits tcumhlnnl:ﬂn» of 1s and 0s), called mdes. are used to re‘pn:scnl numbers,
letters, symbals, i and hing else required in a given appli

Logic Levels

The voltages used 1 represent a 1 and a 0 are called fogic levels. Ideally, one voltage level
represents a HIGH and another voltage level represents a LOW, In a practical digital circuit,
however, a HIGH can be any voltage between a specified minimum value and a specified
maximum value, Likewise, a LOW can be any voltage between a specified minimum and a
specified maximum. There can be no overlap between the accepted HIGH levels and the
accepted LOW levels,

4 = DIGITAL FUNDAMENTALS

FFIGURE 1-5

Logic level ranges of voltage for
a digital circuit

*FIGURE 1-&
Ideal pulses

Vilimant
HIGH
(bimary 1)
Vitmin
Unacceptable
Wiy
LOwW
(binary 0}
Viimins

Figure 1-5 illustrates the general range of LOWSs and HIGHs for a digital circuit. The vari-
able Viyma represents the maximum HIGH voltage value, and Viyp,, represents the mini-
mum HIGH voltage value. The maximum LOW voltage value is represented by Vi, and
the minimum LOW voltage value is represented by Vi, The voltage values between
Vi) and Vigon, are ptable for proper operation. A voltage in the unacceptable range
can appear as either a HIGH or a LOW to a given circuit. Therefore, these unacceptable
values are never used. For example, the HIGH values for a certain type of digital circuit called
TTL may range from 2 V 1o 5 V and the LOW values may range from 0 V to 0.8 V. So, for
example, if a voltage of 3.5 V is applied, the circuit will accept it as a HIGH or binary 1. If a
voltage of 0.5 V is applied, the circuit will accept it as a LOW or binary 0. For this type of
circuit, voltages between 0.8 V and 2 V are unacceptable and are never used.

Digital Waveforms

Digital wavelorms consist of voltage levels that are changing back and forth between the
HIGH and LOW levels or states. Figure 1-6(a) shows that a single positive-going pulse is
generated when the voltage (or current) goes from its normally LOW level to its HIGH level
and then back to its LOW level. The negative-going pulse in Figure 1-6(b) is generated when
the voltage goes from its normally HIGH level to its LOW level and back 1o its HIGH level.
A digital waveform is made up of a series of pulses.

HIGH ——T—_r HIGH —— —
Risingor | | Falling or Falling or | | Rising or
leading edge : | trailing edge leading edge | | trailing edge

| [
| ~ | |

Low —I Low ——d—n |

by Iy T I
(a) Positive-going pulse () Negative-going pulse

The Pulse As indicated in Figure 1-6, the pulse has two edges: a leading edge that occurs
first at time t; and a trailing edge that occurs last at time . For a positive-going pulse, the
leading edge is a rising edge, and the truiling edge is a falling edge. The pulses in Figure 1-6
are ideal because the rising and falling edges are assumed to change in zero time (instanta-
neously). In practice, these transitions never oceur instantaneously, although for most digital
work you can assume ideal pulses.

Figure 1-7 shows a nonideal pulse. The time reguired for the pulse 1o go from its LOW
level to its HIGH level is called the rise time (f,) and the time required for the transition from
the HIGH level to the LOW level is called the fall time (f)). In practice, it is common to
measure tise time from 10% of the pulse amplitude (height from baseline) to 90% of the

INTRODUCTORY DIGITAL CONCEPTS = 5

pulse amplitude and to measure the fall time from 90% to 1 of the pulse amplitude, as
indicated in Figure 1-7. The bottom 10% and the top 10% of the pulse are not included in the
rise and fall times because of the nonlinearities in the waveform in these areas, The pulse
width (fy) i5 a measure of the duration of the pulse and is often defined as the time interval
between the 50% points on the rising and falling edges, as indicated in Figure 1-7.

=FIGURE 1-7 B '___"\.,___
Monideal pube characteristics E t‘ -
Aaplinade i - ! y\
SO . ——te
J Pulse wicih [;
i [
i i
; PR
i
i po
—e) Rise time fael Fall time:

Waveform Characteristics Most waveforms encountered in digital systems are composed of
series of pulses, sometimes called pulse trains, and can be classified as either periodic or non-
periodic. A periodic pulse waveform is one that repeats itself a1 a fixed imerval, called a
period (T). The frequency (f) is the rate at which it repeats itself and 15 measured in herz
(Hz). A nonperiodic pulse waveform, of course, does not repeat itself at fixed intervals and
may be composed of pulses of randomiy differing pulse widihs and/or randomly differing
time intervals between the pulses. An example of each type is shown in Figure 1-8.

L AT el K|
Perid = Ty = Tya Ty = ... =T,
Frequenicy = 4

ia) Penodhc (square wave) i) Nonperiodic

A FIGURE 1-8
Examples of digital waveforms

The frequency (f) of a pulse (digital) waveform is the reciprocal of the period. The rela-
tionship between frequency and perind is expressed as follows:

f=% Equation 1-1
Tu} Equation 1-2

An important characteristic of a periodic digital waveform is its duty cycle. The duty
eycle is the ratio of the pulse width (1y) w the period (T) and can be expressed as a per-
centage.

I
Duty cycle = (—;):m Equation 1-3

& ® DIGITAL FUNDAMENTALS

l EXAMPLE 1-1

Solution

Supplementay Problem

A FIGURE 1-10
Clock waveform
synchronized with a
waveform
representation of &
sequence of bits

A portion of a periodic digital waveform is shown in Figure 1-9. The measurements are in
milliseconds. Determine the following:

(a) period (b) frequency () duty cycle

taef i
i :_|
]

- ‘ - . - T D — 1]

1
4 FIGURE 1-%

(a) The period is measured from the edge of one pulse to the corresponding edge of the
next pulse. In this case T is measured from leading edge 1o leading edge, as indicated.

T equals 10 ms.
1 1 1
(L] f—r—-mm—-lOOHz |
Tw 1 ms .
(c) Duty cycle (T)]m mm)lm 10% |

A periodic digital waveform hes a pulse width of 25 us and a period of 150 ps. Determine
the frequency and the duty cycle.

A Digital Waveform Carries Binary Information

Binary information that is handled by digital systems appears as waveforms that represent
sequences of bits. When the waveform is HIGH, a binary 1 is present; when the waveform is
LOW, a binary 0 is present. Each bit in a sequence occupies a defined time interval called a
bit time.

The Clock In digital systems, all waveforms are synchromzed with a basic timing waveiorm
called the clock. The clock is a periodic waveform in which each interval between pulses (the
period) equals the time for one bit.

An example of a clock waveform is shown in Figure 1-10. Notice that. in this case, each
change in level of waveform A occurs at the leading edge of the clock waveform. In other
cases. level changes occur at the trailing edge of the clock. During cach bit time of the

Big

e

o LU LY LY

L

_T:“
g_

INTRODUCTORY DIGITAL CONCEPTS =

clock, waveform A is either HIGH or LOW. These HIGHs and LOWS represent a sequence of
bits as indicated. A group of several bits can be used as 1 picce of binary information, such as
a number or a letter, The clock waveform itself does not camy information.

Timing Diagrams

A timing diagram is a graph of digital waveforms showing the actual time relationship of
two or more waveforms and how each waveform changes in relation to the others. Figure
1-10 is an example of a simple timing diagram that shows how the clock waveform and wave-
form A are related on a time base.

By looking at a timing dizgram, you can determine the states (HIGH or LOW) of all the
waveforms at any specified point in time and the exact time that a waveform changes state
relative to the other waveforms. Figure 1-11 is an example of a timing diagram made up of
four waveforms, From this timing diagram you can see, for iple, that the three
A, B, and € are HIGH only during bit time 7 and they all change back LOW at the end of bit
time 7 (shaded area),

» FIGURE 1-11 1 1 T 1 rom

Example of a timing diagram 67 s
—
— A—
[
e
.
[0 -
o
il
v —
A, B, and C HIGH
Data Transfer
Data refers to groups of bits that convey some type of information. Binary data, which are
D 1 by digital fi must be i from one circuit to another within a

digital system or from one system to another in order 10 accomplish a given purpose. For
example, numbers stored in binary form in the memory of a computer must be transferred (o
the computer's central processing unit in order o be added. The sum of the addition must then
be transferred to a monitor for display and/or transferred back to the memory. In computer
systems, as illustrated in Figure 1-12, binary data are transferred in two ways: serial and par-
allel, In the figure, only the data lines are shown,

[—I-: w2
Carputer :u" Prinser
n
1
Lo
)
T e e IR ¥
Lio gt fovog e —
] Prlotali]e =
R
Computer ol
-
o h -
i} Serial transfer of 8 bits of binary data from compurer t modem. Interval i) Pasallel wransfer of § bits of binery dats from computer to
Byt ty s first prister. The beginning time is r,

4 FIGURE 1-12

8 = DIGITAL FUNDAMENTALS

IEMMPI.E 1-2

Solution

Supplementary Problem

When bits are transferred in serial form from one point to another, they are sent one bit at a
time along a single conductor, as illustrated in Figure 1-12(a) for the case of a computer-to-
modem transfer. During the time interval from 1, to 1, the first bit is transferred. During the
time interval from f o f;, the second bit is wansferred, and so on. To transfer eight bis in
series, it takes eight time intervals,

When bits are transferred in parallel form, all the bits in a group are sent out on separate
lines at the same time. There is one line for each bit, as shown in Figure 1-12(b) for the
example of eight bits being transferred from a computer 10 a printer. To transfer eight bits in
parallel, it takes one time interval compared to cight time intervals for the serial transfer.

To summarize, an advantage of serial transfer of binary data is that a minimum of only one
line is required. In parallel transfer, a number of lines equal 10 the number of bits to be trans-
ferred a1 one time is required. A disadvaniage of serial transfer is that it takes longer 10 trans-
fer a given number of bits than with parallel transfer. For example, if one bit can be trans-
ferred in 1 ps, then it takes 8 ps to serially transfer eight bits but only 1 ps to parallel transfer
cight bits. A disadvantage of parallel transfer is that it takes more lines.

{a) Determine the total time required to seriully transfer the eight bits contained in wave-
form A of Figure 1-13, and indicate the sequence of bits. The left-most bit is the first to
be transferred. The 100 kHz clock is used as reference.

{b) What is the total time to transfer the same eight bits in parallel?

e LML

L

%

L

A

4 FIGURE 1-13

(a) Since the frequency of the clock is 100 kHiz, the period is

1 1
7= Tooms ~ 10
It takes 10 ps to transfer cach bit in the waveform. The total tansfer time for § bits is

B X 10 pus = 80 ps
To determine the seq of bits, ine the in Figure 1-13 doring each
bit time. If waveform A is HIGH during the bit time, a | is transferred. If waveform A
is LOW during the bit time, a 0 is ferred. The bit seq is il d in Figure
1-14. The left-most bit is the first 1o be transferred.

.W‘_”J -I “Lﬂ___]“"'l “-] . L _j h

A FIGURE 1-14

(b) A parallel transfer would take 10 gs for all eight bits,

If binary data are transferred at the rate of 10 million bits per second (10 Mbits/s), how
long will it take to paralle] transfer 16 bits on 16 lines? How long will it take 1o serially
transfer 16 bits?

INTRODUCTORY DIGITAL CONCEPTS

[
2. What does a bit mean?
3. What are the bits in a binary system?
4. How are the rise time and fall time of a pulie measured?
5. Knowing the period of a waveform, how do you find the frequency?
. Explain what a clock waveform is.
7. What is the purpose of a timing diagram?
8. What is the main advantage of parallel transfer over serial transfer of binary data?

3 INTRODUCTION TO BASIC LOGIC OPERATIONS

In its basic form, logic is the realm of human reasoning that tells you a cenain proposition
(declarative statement) is true if certain conditions are true, Propositions can be clas §as
true or false. Many situations and processes that you encounter in your daily life can be
cxpressed in the form of propositional, or logic, functions. Since such functions are
true/false or yes/no statements, digital circuits with their two-state characteristics are appli-
cable.

After completing this section, you should be able 1o

® List three basic logic operations 8 Define the NOT operation ® Define the AND oper-
ation = Define the OR operation

Several p itions, when combined, form prop 1, or logic, functions., For 1
the pﬂ!pﬂhlllﬂﬂdl statement “The light is on™ w:II be true if “The bulb is not bumed out™ is
true and if “The switch is on” is true. Therefore, this logical statement can be made: The ligh
is on only if the bulb is not burned our and the switch is on. In this example, the first statement
is true only if the last iwo statements are true, The first statement (“The light is on™) is then
the basic proposition, and the other two statements are the conditions on which the proposi-

tion depends.
In the 1850s, the Irish logician and math ician George Boole developed a math ical
system for fi ing logic with symbols so that problems can be written and

solved in a manner similar to ordinary algebra, Boolean algebra, as it is known today, is
applied in the design znd analysis of digital systems and will be covered in detail in Chapter 4,

The term logic is applicd to digital circuits used to implement logic functions. Several
kinds of digital logic cireunits are the basic el it form the building blocks for such
complex digital systems us the computer. We will now look at these elements and discuss their
functions in a very gencral way, Later chapters will cover lhcs: circuits in detail.

Three basic logic operations (NOT, AND, and OR) are indicated by dard
shape symbals in Figure 1-15. Other standard symbols for these logic operations will be
introduced in Chapter 3. The lines connected to each symbol are the inputs and outputs. The
inputs are on the left of each symbol and the output is on the dght. A circuit that performs a
specified logic operation (AND. OR) is called a logic gate. AND and OR gates can have any
number of inpets, as indicated by the d.ush:s in the figure,

In logic operati the true/false ¢ ioned earlier are represented by a HIGH
(true) and a LOW (false). Each of the three basic logic operations produces a unique response
1o a given set of conditions.

*

10 = DIGITAL FUNDAMENTALS

= FIGURE 1-15 ~ °

The basic logic operations and
symbols

> FIGURE 1-1&
The NOT operation

= FIGURE 1-17
The AND operaticn

= FIGURE 1-18

D T T

NOT

The NOT operation changes one logic level to the opposite logic level, as indicated in Figure
1-16. When the input is HIGH (1), the output is LOW (0). When the input is LOW, the output
is HIGH. In either case, the output is nof the same as the input. The NOT operation is imple-
mented by a logic circuit known as an inverter.

HIGH III—D?— LOW i) LOW i —'[>)— HIGH (1)

AND

The AND operation produces a HIGH output only if all the inputs are HIGH, as indicated in
Figure 1-17 for the case of two inputs. When one input is HIGH and the other input is HIGH.
the output is HIGH. When any or all inputs are LOW, the output is LOW. The AND operation
is implemented by a logic circuit known as an AND gate.

HIGH (1) LOW ()

§ _:D—mumn i :D——-L:m-m-.
HIGH (1) . HIGH (1)
HIGH (1) :D_ oW Low:o):D_ -
LOW (1) ’ ! LOW i) 2

Ok

The OR operation produces a HIGH output when any of the inputs is HIGH, as indicated in
Figure 1-18 for the case of two inputs. When one input is HIGH or the other input is HIGH or
both inputs are HIGH, the output is HIGH. When both inputs are LOW, the output is LOW.
The OR operation is implemented by a logic circuit known as an OR gate.

The OR operation

ISECTION 1-3
REVIEW

HIGH 11y LOW (0

HIGH {1y HIGH (13
HIGH (1) HIGH (1)
HIGH (1) LOW i

HIGH (1% LOW ity
LW iy LOW iy

When does the NOT operation produce a HIGH output?
When does the AND operation produce a HIGH output?
When does the OR operation produce a HIGH cutput?
What is an inverter?

. What is a logic gate?

ERE

INTRODUCTORY DIGITAL CONCEPTS =

DIGITAL INTEGRATED CIRCUITS

The basic logic operations that have been discussed and many more which will be discussed
in later chapters are available in integrated circuit {1C) form. Digital systems have incorpo-
rated ICs for long because of their small size, high reliability, low cost, and low power con-

ion. It is imp 1o be able to enize the IC packages and to know how the pin
connections are numbered.

After completing this section, you should be able o
® Identify dual in-line packages (DIP) @ Determine pin number on DIPIC package

A monolithic integrated cireuit (1C) is an electronic circuit that is constructed entirely on
a single small chip of silicon. All the components that make up the circuit—transistors,
diodes, resistors, and capacitors—are an integral pant of that single chip. Fixed-function logic
and programmable logic are two broad categories of digital [Cs. In fixed-function logic, the
logic functions are set by the manufecturer and cannot be aliered,

IC Packages

Integrated circuit (IC) packages are classified according to the way they are mounted on
printed cireuit (PC) boards as either through-hale mounted or surface mounted. The thr(:ugh

hole type pnckugu have pins (leads) that are inserted through holes in the PC board and can
be I on the ite side, The most common type of through-hole pack-
age is the dual in-line package (DII‘} shown in Figure 1-19.

FFIGURE 1-19

() Cutway view of DIP b Duald in-line package (DIF)

Figure 1.19(a) shows a cutaway view with the circuit chip shown within the package.
Points on the chip are connected to the package pins to allow input and output connections to
the outside world. Figure 1.19(b) shows the outer view of DIP IC.

A Notch
"p:, - Pin
[Pin Numbering Wdenificr ~,

1 16
All IC packages have a i format for b the pins (leads). The dual in-line pack- 2 I5
age numbering amangement is illustrated in Figure 1.20 for a 16-pin package. Looking at the a 14
top of the package, pin 1 is indicated by an identifier that can be either a small dot, a notch, or : :32
a bevelled edge. The dot is always next to pin 1. Also, with the notch oriented upward, pin 1 is 6 1]
always the top left pin, as indicated. Starting with pin 1, the pin numbers increase as you go 1 lg

down, then across and up. The highest pin number is always o the right of the notch or oppo-

site the dot.
AFIGURE 1-20
Pin numbering for DIP.

12 = DIGITAL FUNDAMENTALS

|SEC{ION 1-4
REVIEW

SUMMARY

. What s an integrated circuit?
Define the terms DIP.

P

SELF-TEST

An analog quantity has continuous values.

A digital quantity has a discrete set of values.

A binary digit is called a bit.

A pulse is characterized by rise time, tall time, pulse width, and amplitude,

“The frequency of a periodic waveform is the reciprocal of the period. The formulas relating frequency
and period are

1 1
== andT=—
I T T I;
The duty cycle of a pulse waveform is the ratio of the pulse width 1o the period, expressed by the

following formula as a percentage:

Duty cycle = (’—;)1%
A timing diagram is an arrangement of two or more showing their relationship with
respect o time.

® Three basic logic operations are NOT, AND, and OR. The standard symbols for these are given in
Figure 1-21.

> FIGURE 1-21 D ﬁ:}— @_
NOT AND OR

Digital systems incorporate integrated circuits (IC). DIP is the most commonly used IC package for
fixed-function ICs.

Answens are at the end of the chapter,
1. A quantity having continuous values is
(=) a digital quantity (k) an analog quantity
(e} a binary quantity (d) a natural quantity
2. The term bit means
{w, u small amount of data (b) aloral
(c) binary digit (d) both answers (b) and (c)

3. The time interval on the leading edge of a palse between 10% and 90% of the amplitude is the
(a) risctime (b} fall time (e} pulse width {(d) period

SECTION 1-1

SECTION 1-2

INTRODUCTORY DIGITAL CONCEPTS

4. A pulsc in a certain waveform occurs every 10 ms. The frequency is
fa) 1kHz (b) THz () 100Hz (d) 1D Hz

5. Inacertain digital waveform, the period is twice the pulse width. The duty eycle is
fa} 100 (b) 200% e} 50%

6. An inverter
(a) performs the NOT operation (b} changes a HIGH to a LOW
fc) changes a LOW o a HIGH {d} docs all of the above
7. ‘The output of an AND gate is HIGH when
(a) any input is HIGH (b} all inputs are HIGH
(e} no inputs are HIGH {d} both answers {a) and (b)
8. The output of an OR gate is HIGH when
(@) any input is HIGH (h) all inputs are HIGH
() no inputs are HIGH {d} both answers (a) and (b)

Answen to odd-numbered problems are at the end of the book.

Digital and Analog Quantities
1. Name two sdvantages of digital data as compared 1o analog dat
2. Name an analog quantity other than temperature and sound,

Binary Digits, Logic Levels, and Digital Waveforms

3. Define the sequence of bits (15 and Os) rey d by cach of the foll
sequences of levels:
{a) HIGH, HIGH, LOW, HIGH, LOW, LOW, LOW, HIGH
{b) LOW, LOW, LOW, HIGH, LOW, HIGH, LOW, HIGH, LOW

4. List the sequence of levels (HIGH and LOW) that represent each of the foliowing.
bit sequences:
(@) 10011101 brrrio1oon

5. For the pulse shown in Figure 1-22, graphicall ine the ing;
(m) rise time (b) fall ime fe) pulse width (d) amplitede

> FIGURE 1-22 Vokis

Hips)

13

14

DIGITAL FUNDAMENTALS

SECTION 1-3

SECTION 1-4

6. Determine the period of the digital waveform in Figure 1-23.
7. What is the frequency of the waveform in Figure 1-237
8. Is the pulse waveform in Figure 1-23 periodic or nonperiodic?
9. Determine the duty cycle of the waveform in Figure 1-23.

¥

1 (ms)
A FIGURE 1-23
10, D ine the bit seqp P by the in Figure 1-24. A bit time is | ps in this
case.

11 What is the total serial transfer time for the eight bits in Figure 1-247 What is the totul paralle] trans-

i 1 i 0
i 1 i 1
i 1 ' |
o lps Zps 3y 4

'
1
1
: :
. : '
s Sps 6ups Tus Bps

T —

A FIGURE 1-24

Intreduction to Basic Logic Operations

1Z. A logic circuit requires HIGHs on all its inputs to make the output HIGH. What type of logic circuit
s it?

13, A basic 2-input logic circuit has a HIGH on one input and a LOW on the other input, and the output
is LOW. Identify the circuit.

14, A basic 2-input logic circuit has a HIGH on one input and a LOW on the other input. and the output
s HIGH. What type of logie circuit is i'?

Digital Integrated Circuits

15, What is meant by an 1C?

16. Explain the term DIP.

17. Label the pin numbers on the IC package whose top view is shown in Figure 1-25.

*FIGURE 1-25

INTRODUCTORY DIGITAL CONCEPTS =

SECTION REVIEWS
SECTION 1-1 Digital and Analog Quantities
1. Analog means continuous,
2. Digital means discrete,
3. A digital quantity has a discrete set of values and an analog quantity has continuous values.

4. A public address system is analog. A CD player is analog and digital. A computer is all
digital.

SECTION 1-2 Binary Digits, Logic Levels, and Digital Waveforms
. 1. Binary means having two stotes or values,
2. Abit is o binary digit.
3. The bits are | and 0.
4. Rise time: from 10% to 90% of amplitude, Fall time: from %% to 10% of amplitude.
5. Frequency is the reciprocal of the period.
6. A clock waveform is a basic timing waveform from which other waveforms are derived,

7. A timing disgram shows time relationships of waveforms.
8. Parallel transfer is faster than seral wransfer,

SECTION 1-3 Introduction to Basic Logic Operations
1. When the input is LOW
2, When all inputs are HIGH
3. When any or all inputs are HIGH
4. Aninverter is a NOT circuit.
5. Alogic gate is a circuit that performs & logic operation (AND, ORL

SECTION 1-4 Digital Integrated Circuits
1. Anintegrated circuit (IC) is an ic circait entirely on a
2. Dual in-line package.

chip.

SUPPLEMENTARY PROBLEMS FOR EXAMPLES
1-1 f=6.67 kHz; Duty cycle = 16.7%
1=2 Parallel transfer: 100 ns; Serial transfer: 1.6 ps
SELF-TEST
L b} 2 (dy X (a) 4. (ch 5. (c) 6. (dy T. (b 8)

NUMBER SYSTEMS,
OPERATIONS, AND CODES

Interpret the American Standard Code for Information Inter-
change (ASCII)

Cancept of parity and parity method of emor detection
® Review of eror-detection codes

= Hamming error-detection and

= Review the decimal number matem

® Count in the binary number system

m Convert from decimal to binary and from binary to decimal

= Apply arithmetic operations to binary numben

= Determine the 1' and 2's complements of a binary number

= Express signed binary numbens in sign-magnitude, 1% comple-

INTRODUCTION

ment, 2's complement, and floating-point format The binary number system and digital codes are fundamental

to computers and to digital electronics in general. In this

" Carry out arithmetic operations with signed binary number chapter, the binary number system and its relationship to

m Convert between the binary and hexadecimal rumber systems other number systems such as decimal, hexadecimal, and
octal is the principal focus. Arithmetic operations with

= Add numben in hoadecimal form binary numbers are covered to provide a basis for under-

u Convert between the binary and octal number systems standing how computers and many other types of digital
systems work. Ako, digital codes such as binary coded

w Express decimal numbers in binary coded decimal (BCD) form decimal (BCD), the Gray code, and the ASCII are covered.

» Add BCD numbers The concept of parity and the parity method of detecting
errors in codes is introduced. Various error detection codes

= Convert between the binary system and the Gray code and Hamming code for error correction has been covered,

| DECIMAL NUMBERS

You are familiar with the decimal number system because you use decimal numbers every
day. Although decimal bers are ¢ pl their weighted is often not
understood. In this section, the of decimal bers is reviewed. This review will
help you more easily understand the structure of the binary number system, which is impor-
tant in computers and digital electronics. .

After completing this section, you should be able 1o

= Explain why the decimal number system is a weighted system = Explain how powers of
ten are used in the decimal system = Determine the weight of each digit in a decimal
number

NUMBER SYSTEMS, OPERATIONS, AND CODES =

The decimal number system has ten digits, 0 through 9. Each of the ten digits represents a
certain quality. Since there are ten distinet digits used in the decimal number system, there-
fore, the decimal number system has a base (or radix) of 10.

As you know, the ten symbols (digits) do not limit you to expressing only ten different
quantities because you use the various digits in appropriate positions within a number to indi-
cate the magnitude of the quantity. You can express quantities up through nine before running
out of digits; if you wish to express a quantity greater than nine, you use two or more digits,
and the position of each digit within the number tells you the magnitude it represents. If, for
example, you wish to express the quantity twenty-three, you use (by their respective positions
in the number) the digit 2 to represent the quantity twenty and the digit 3 to represent the
quantity three, as illustrated below:

The digit 2 has a weight of The digit 3 has a weight

10 in this position »———1 r of 1 in this position
2 3

2x10 + 3x1
1 1
20 + 3

23

The position of each digit in a decimal number indicates the magniwde of the quantity rep-
resented and can be assigned a weight. The weights for whole numbers are positive powers of
ten that increase from right to left, beginning with 10" = 1.

R [U TV T e T R T1

For fractional numbers, the weights are negative powers of ten that decrease from left to right
beginning with 10”".
10° 10" 10°107" 1072 1070 ..
Decimal point

The value of a decimal number is the sum of the digits after each digit has been multiplied
by its weight, as Examples 2-1 and 2-2 illustrate.

| EXAMPLE 2-1
Express the decimal number 47 as a sum of the values of each digit.

Solution The digit 4 has a weight of 10, which is 10', as indicated by its position. The digit 7 has a
weight of 1, which is 10°, as indicated by its position.

47 = {4 % 10") + (7 % 10°)
=41+ (TX1)=404+7

Supplementary Problem Determine the value of each digit in 939.

18 = DIGITAL FUNDAMENTALS

[e]
Express the decimal number 568.23 as a sum of the values of each digit. |

|
Solution The whole number digit 5 has a weight of 100, which is 107, the digit 6 has a weight of 10,
which is 10", the digit 8 has a weight of 1, which is 10°, the fractional digit 2 has a weight
i of 0.1 is 107", and the fractional digit 3 has a weight of 0.01, which is 1072,
56823 = (S X 107 + (6 X 10N+ @ X 10D + (2% 107 + (3= 107%
= (5% 100) + (6 X 10) +(8X 1) +@2X01¢ + (3 X001
= 50 + 60 + 8 + 02 + 003

Suppl y Problem D ine the value of each digit in 67.924.

I SECTION 2-1
REVIEW

. What weight does the digit 7 have in each of the following numbers?

PRI (3) 1370 (b) 6725 (c) 7051 (d) 58.72
aof the chapter, 2. Exprens each of the following decimal numbers as a sum of the products obtained by
multiplying each digit by its appropriate weight:
(a) 51 (b) 137 (c) 1492 (d) 10658
B sinARy NUMBERS R -

The binary number system is simply another way to represent quantities. The binary system
is less complicated than the decimal system because it has only two digits. It may séem more
difficult at first because it is unfamiliar to you. The decimal system with its ten digits is a
base-ten system; the binary system with its two digits is a base-two system. The two binary
digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number indicates its weight, or
value within the number, just as the position of a decimal digit determines the value of that
digit. The weights in a binary number are based on powers of two.

After completing this section, you should be able to

= Count in binary = Delemmemellrgendecmuinumberummhemmmdbyl
given number of bits = Convert a binary number to a decimal number

Counting in Binary
To learn to count in the binary system, first look at how you count in the decimal system. You
start at zero and count up to nine before you run out of digits. You then start another digit
position {to the left) and continue counting 10 through 99. At this point you have exhausted all
two-digit combinations, so a third digit position is needed to count from 100 through 999,

A comparable situation occurs when you count in binary, except that you have only two
digits, called bits. Begin counting: 0, 1. At this point you have used both digits, so include
another digit position and continue: 10, 11. You have now exhausted all combinations of two
digits, so a third position is required. With three digit positions you can continue to count:
100. 101, 110, and 111. Now, you need a fourth digit position to continue, and so on. A binary
count of zero through fifteen is shown in Table 2-1. Notice the patterns with which the 1s and
(s alternate in each column.

NUMBER SYSTEMS, OPERATIONS, AND CODES = 19

» TABLE 2-1 .
DECIMAL 5 ; 4
NUMBER BINARY NUMBER &

i 0 il 0 0 :'i
1 0 il 0 1 J,
2 0 0 1 o f
3 0 il 1 1 g
4 0 I 0 (O |
3 0 I 0 ¥ |
6 0 1 1 0
7 0 1 1 1 8
8 I 0 [} o
9 | 0 0] |
10 | 0 1 o-§
1 1 0 1 1 8
12 1 I 0 o -
13 | I 0 1 8
14 | 1 1 08
15 1 I 1 |

As you have seen in Table 2-1, four bits are required to count from zero to 15, The value of
a bit is determined by its position in the number. In general, with n bits you can count up to a
number equal to 2% — 1.

Largest decimal number = 2° — |

For example, with five bits (n = 5) you can count from zero to thirty-one.
P-1=32-1=31

With six bits (n = 6) you can count from zero 1o sixty-three.

P -1=64—1=63

The Weighting Structure of Binary Numbers

A binary number is a weighted number. The right-most bit is the LSB (least significant bit) in
a binary whole number and has a weight of 2° = 1, The weights increase from right to lefi by
a power of two for cach bit. The left-most bit is the MSB (most significant bit); its weight
depends on the size of the binary number.

Fractional numbers can also be represented in binary by placing bits to the right of the
binary point, just as fractional decimal digits are placed to the right of the decimal point. The
left-most bit is the MSB in a binary fractional number and has a weight of 27! = 0.5, The
fractional weights decrease from lefi to right by a negative power of two for cach bit,

The weight structure of a binary number is

a1 L A SL S
- Binary poim
where n is the number of bits from the binary point. Thus, all the bits to the left of the binary
point have weights that are positive powers of two, as previously discussed for whole num-
bers. All bits to the right of the binary point have weights that are negative powers of two, or
fractional weights.,

20 = DIGITAL FUNDAMENTALS

The powers of two and their equivalent decimal weights for an 8-bit binary whole number
and a 6-bit binary fractional number are shown in Table 2-2. Notice that the weight doubles
for each positive power of two and that the weight is halved for each negatjve power of two.
You can easily extend the table by doubling the weight of the most significant positive power
of two and halving the weight of the least significant negative power of two; for example,
2" = 512and 277 = 0.0078125.

¥ TABLE 2-2

Binary weights

POSITIVE POWERS OF TWO
(WHOLE NUMBERS)

NEGATIVE POWERS OF TWO
(FRACTIONAL NUMBER)

2* o - 2 20

1 12 14 118 1116 132 164
035 0.25 0.125 0.0625 003125 0015625
[o i e s =, : e T

Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that

are 1 and discarding the weights of all bits that are (. The following two examples will ills-
trate this.

IEX.AMPI.E 2-3

Solution

Conven the binary whole number 1101101 to decimal.

Determine the weight of each bit that is a 1, and then find the sum of the weights (o get the
decimal number.
Weight:2* 2* 20 22 2 2! 2°
Binarynumber; 1 1 0 1 1 0 1
1101101 = 2° + 2° +
= 64 + 32 +

L, T S)
E+4+1 =109
Supplemantary Problem Convent the binary

er 10010001 to decimal,

I EXAMPLE 2-4

Solution

Convert the fractional binary number (L1011 to decimal.

Determine the weight of each it that is a 1, and then sum the weights to get the decimal
fraction.
Weight: 27} 272 272 o4
Binarynumber: 0.1 0 1 1
oo =2"'+2+2
= (.5 + (L125 + 0.0625 = 0.6875
Supplementary Problem Convert the binary number 10.111 to decimal.

NUMBER SYSTEMS, OPERATIONS, AND CODES = 21

I :iﬁ:l::‘ ds2 1. What is the largest decimal number that can be represented in binary with eight bits?

2. Determine the weight of the 1 in the binary number 10000.
3. Convert the binary number 10111101.011 te decimal.

25377 DECIMAL-TO-BINARY CONVERSION |

In Section 2-2 you leamed how to convert & binary number to the equivalent decimal num-
her. Now, you will learn two ways of converting from a-decimal number to a binary number,

After completing this section, you should be able 1o

= Convert a decimal number to binary using the sum-of-weights method = Convert a deci-
mal whole number to binary using the repeated division-by-2 method = Convert
a decimal fraction 1o binary using the repeated multiplication-by-2 method

Sum-of-Weights Method

One way to find the binary number that is equivalent to a given decimal number is 1o deter-
mine the set of binary weights whose sum is equal to the decimal number. An casy way to
remember binary weights is that the lowest is 1, which is 2°, and that by doubling any weight,
you get the next higher weight; thus, a list of seven binary weights would be 64, 32, 16, 8, 4,
2, 1 as you learned in the last section. The decimal number 9, for example, can be expressed
as the sum of binary weights as follows;

9=8+1 or 9=2"+2"
Placing 1s in the appropriate weight positions, 2* and 2°, and Os in the 2% and 2" positions
determines the binary number for decimal 9.

PP

1001l Binary number for decimal 9

I EXAMPLE 2-5
Convent the following decimal numbers 1o hinary:

(a) 12 (b) 25 (c) 58 (d) B2

Solution (a) 12=8+4=2"+27 1100

) 25=16+8+1=2'+2"+2" 11001

() S8=32+16+8+2=2"4+2' 42742 111010

) 82=64+16+2=2"+2"+2'

Supplementary Problem Convert the decimal number 125 to binary.

22 wm DIGITAL FUNDAMENTAL®

Repeated Division-by-2 Method

A ic method of ting whole bers from decimal to binary is the repeated divi-
sion-by-2 process. For example, 1o convert the decimal number 12 1o binary, begin by dividing
12 by 2. Then, divide each resulting quotient by 2 until there is a 0 whole-number quotient. The
remainders generated by each division form the binary number. The first remainder to be pro-
duced is the LSB (least significant bit) in the binary number, and the last remainder to be pro-
duced is the MSB (most significant bit). This procedure is shown in the following steps for
converting the decimal number 12 to binary.

Remainder
12
3 6 00—
s 3 0
.
3. 1 1

“"

>
_J

Stop when the
whole-number gquotient is 0. MsE _1sp
EXAMPLE 2-6 e o i
Convert the following decimal numbers to binary: i
(a) 19 (b) 45 l
Solution (a) Remainder () Remsinder _ ' ?
'2—9- | — g-n 1
— —
§=4 1 ?-11 4]
2=2 0 Pes
§,| 0 §=z 1
i..,g 1 E'-=I]
2 2
—l]
10011 1
i MsB— L LsB 2=° 1_—1
101101 _
MsB = Torse |

. Supplementary Problem Convert decimal number 39 to binary.

NUMBER SYSTEMS, OPERATIONS, AND CODES m 23

| Converting Decimal Fractions to Binary

Examples 2-5 and 2-6 demonstrated whole-number conversions. Now, let us look at
fractional conversions. An easy way 1o remember fractional binary weights is that the most
significant weight is 0.5, which is 27", and that by halving any weight, you get the next lower
weight; thus a list of four fractional binary weights would be 0.5, 0.25, 0.125, 0.0625.

Sum-of-Weights The sum-of-weights method can be applied to fractional decimal numbers,
as shown in the following example:
0625 =05+ 0125=2""+2" = 0101

There is a | in the 2" position, a 0 in the 277 position, and a 1 in the 27 position.
Repeated Multiplication by 2 As you have seen, decimal whole numbers can be converted
o I:lmar)' by repeated division by 2. Decimal fractions can be converted to binary by repeated

ion by 2. For ple. 1o comren the decimal fraction 0.3125 io binary, begin by
nm!uply;ng(ﬂldby’nndlhcn Itiplying cach resulting fractional part of the product by
2 until the fractional product is zero or until the dl:strﬂi numhcr of decimal places is reached.
The carried digits, or carries, by the lications produce the binary number.
The first carry produced is the MSB, and the last Larl')' is the LSB. This procedure is
illustrated as follows:

MSB LSB
Carry D101
03125 % 2 = 0625 ‘_"—‘J

L—‘—r" 0
0.625 x 2 = 125

1
025 X 2 =050

0
0502 =100

1

Continue to the desired number of decimal places

or stop when the fractional part 15 all zeros

SECTION 2-3

REVIEW 1. Convert each decimal number to binary by using the sum-of-weights method:
(a) 23 (b) 57 (c) 45.5
2, Camerl ea:ll deﬂmal number to binary by using the repeated division-by-2 methed
| by-2 for fi
(3) 14 (b) 21 (c) 0375

| BINARY ARITHMETIC

Binary arithmetic is essential in all digital computers and in many other types of digital sys-
tems. To understand digital systems, you must know the basics of binary addition, subtrac-
tion, multiplication. and division. This section provides an introduction that will be
expanded in later sections.

After completing this section, you should be able to

& Add binary numbers ® Subtract binary numbers ® Multiply binary numbers
® Divide binary numbers

24 = DIGITAL FUNDAMENTALS

Binary Addition
The four basic rules for adding binary digits (bits) are as follows:

0+0= 0 Sum of 0 with a carry of 0
0+1= | Sum of 1 with a carry of 0
140= 1 Sum of 1 with a carry of 0
1+1=10 Sum of 0 with » carry of 1

Notice that the first three rules result in a single bit and in the fourth rule the addition of two
15 yields a binary two (10). When binary numbers are added, the last condition creates a sum
of U in a given column and a carry of 1 over to the next column to the left, as illustrated in the
following addition of 11 + 12

Camry Camry
1 1
o 1 1
+0 0 I
1 o [i]

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the left. In the middie
column, 1 + 1 + 0 = 0 with a carry of 1 to the next column to the left. In the left column,
1+0+0=1L

When there is a carry of 1, you have a situation in which three bits are being added (a bit in
each of the two numbers and a carry bit). This situation is illustrated as follows:

Carry bits ——,
1 +0+0=01 Sum of 1 with a carry of 0
1 +1+0=10 Sum of 0 with a carry of 1
1 +0+1=10 Sum of 0 with a carry of 1
1+1+1=1 Sum of 1 with a carry of 1

Example 2-7 illustrates binary addition.

I EXAMPLE 2-7
Add the following binary numbers:

(a) 11+ 011 (b) 100+ 10 (¢) 111+ 11 (d) 110+ 100

Solution The equivalent decimal addition is also shown for reference.

{a) 11 3 (b} 100 4 (e} 111 T (dy 110 6
+11 #3 £10 22 £11 +3 100 4
110 [1o 6 1010 10 1010 10

Supplementary Problem Add 1111 and 1100.

Binary Subtraction
The four basic rules for subtracting bits are as follows:
0-0=0
l=1=0
1—-0=1
10 =] =1 0 = 1 with a borrow of 1

NUMBER SYSTEMS, OPERATIONS, AND CODES

When subtracting numbers, you sometimes have to borrow from the next column to the left.
A borrow is required in binary only when you try to subtract a 1 from a 0. In this case, when a
1 is borrowed from the next column to the lefi, a 10 is created in the column being subtracted,
and the last of the four basic rules just listed must be applied. Examples 2-8 and 2-9 illustrate
binary subtraction: the equivalent decimal subtractions are also shown.

I EXAMPLE 2-8
Perform the following binary subtmctions:

(a) 11 =01 (b) 11— 10

Solution (a) 11 3 m 1 3
=01 =1 =10 =2
10 2 01 1

No borrows were required in this example. The binary number 01 is the same 4z 1.

Supplementary Problem Subtract 100 from 111,

IEXAMPLE 2-9
Subtract 011 from 101,

Solution {131

=01
010

IJL:J n

Let us examine exactly what was done 1o subtraet the two binary numbers since a borrow

is required. Begin with the right columa.

Lefit colemn: Middle colonm:
When a 1 is borrowed, — Bowrow 1 from next column
Lo the belt, making a 10 in this

alislef, so0 -0 =0, Y
colomn, then 10 —1= 1.

L

R

1ol Right column:
-0 11 1=1=0

Supplementary Problem Subtract 101 from 110,

Binary Multiplication
The four basic rules for multiplying bits are as follows:
0x0=0
0x1=0
1=0=40
1x1=1

Multiplication is performed with binary numbers in the same manner as with decimal nem-
bers, It involves forming panial products, shifting each successive partial product left one

25

26 ® DIGITAL FUNDAMENTALS

_Iﬂwumt 2-10

place, and then adding all the partial products. Example 2-10 will illustrate the proce-

Solution

Counnl, Prabl.

dure; the equi decimal multipli
Perform the following bi
(@ 11X 11 (b) 101 X 111
(a) 11 3 e 11
X1l %3 () x 101
Partial 11 9 Partial 111
products|{+11 products| 000
1001 8 +111
100011
1101 X 1010,

Binary Division

are shown for reference.

al

Division in binary follows the same procedure as division in decimal, as Example 2-11 illus-
trates. The equivalent decimal divisions are also given,

Perform the following binary divisions:

(a) 110 + 11 (b) 110+ 10

10 2 11

(a) 11J110 3J6 (b) 10]110
n 6 10

000 0 10

10

[}

Supplementary Problem Divide 1100 by 100.

SECTION 2-4
REVIEW

1. Perform the following binary addi

itions:

(a) 1101 + 1010 (b) 10111 + 01101
2. Perform the following binary subtractions:

(a) 1101 — 0100 (b) 1001 -

o1

3. Perform the indicated binary operations:

(a) 110 111 (b) 1100 + 01

NUMBER SYSTEMS, OPERATIONS, ANu CODES

[2=5" | 1's AND 2's COMPLEMENTS OF BINARY NUMBERS

The 1's I and the 2's compl of a binary number are important because they
permit the ion of i bers. The method of 2's complement arithmetic is
ly used in comy 1o handle i L

gl

After completing this section, you should be able 1o

® Convert a binary number to its 1's complement @ Convert a binary number to its 2's
complement using either of two methisds

Finding the 1's Complement of a Binary Number

The 1's complement of a binary number is found by changing all Is 1o Os and all 0s o 15, as
illustrated below:

Binary number

(=Rl

0
1
1

o
(=1
——

0lo
11l
101 I's complement

Application Example

The simplest way to obtain the 1's complement of a binary number with o digital circuit is to
use parallel inverters (NOT circuits), as shown in Figure 2—1 for an 8-bit binary number,

YT

Finding the 2's Complement of a Binary Number

The 2's complement of a binary number is found by adding 1 to the LSB of the 1's comple-
ment.

2's 1 =(l's I 1+ 1

P

Example 2-12 shows how 1o find the 2's complement.

I EXAMPLE 2-12
Find the 2's complement of 10110010,

Solution 10110010 Binary number
01001101 1's complement
+ 1 Addl

01001110 2's complement

Suppls y Probli D ine the 2's ¢ | of 11001011,

27

28 ® DIGITAL FUNDAMENTALS

I EXAMPLE 2-13

i Solution
|
|
|

Supplementary Problem

¥ FIGURE 2-2

Example of obtaining the 2's
complement of a negative
binary number

I SECTION 2-5
REVIEW

An alternative method of finding the 2's complement of a binary number is as follows:

1. Start at the right with the LSB and write the bits as they are up to and including the
first 1,

2, Take the 1's complements of the remaining bits.
Example 2-13 illustrates these steps.

Find the 2's complement of 10111000 using the alternative method. |

10111000 Binary number
1"s cumplcm:nls_,—) 01001000 2's complement

of original bits
ol T—— These bits stay the same.

Find the 2's complement of 11000000,

Application Example
The 2's complement of a negative binary number can be realized using inverters and an adder,
as indicated in Figure 2-2. This illustrates how an 8-bit number can be converted to its 2's
complement by first inverting each bit (taking the 1's complement) and then adding 1 to the
1"s complement with an adder circuit

r ?#ﬁj???
Adder i.n (add 1)
Oustpust bits {sam)
T T T T T 171
2 complement o 1 a 1 [} 1 |

To convert from a 1"s or 2's oomplcm:nl back to the true (uncomplemented) binary form,

use the same wo | I iously. To go from the 1°s complement back to
true bm:lry. reverse all the bits. To go from the 2's complement form back to true binary, take
the I's of the 2's compl number and add 1 to the least significant bit.

1. Determine the 1’ complement of each binary number:
(a) 00011010 (b) 11110111 (e} 10001101

2. Determine the 2's complement of each binary number:
(a) 00010110 (b) 11111100 (c) 10010001

NUMBER SYSTEMS, OPERATIONS, AND CODES ®» 29

SIGNED NUMBERS

Digital systems, such as the computer, must be able to handle both positive and negative
numbers. A signed binary number consists of both sign and magnitude information. The sign
indicates whether a number is positive or negative and the magnitude is the value of the
number, There are three forms in which signed lm:gcr{whnlcl numbers can be represented
in binary: sig gnitude, 1's ,‘ and 2's P Of these, the 2's comple-
ment is the most imyp and the sig itude is rarely used. Noninteger and very large
or small numbers can be expressed in floating-point format.

After completing this section, you should be able 1o

= Express positive and negati in sign-mag) » Express positive and nega-
tive numbers in 1's complement ® Express positive and negative numbers in 2°s comple-
ment ® Determine the decimal value of signed binary numbers ® Express a binary num-
Iber in floating-point format

The Sign Bit
The left-most bit in a signed binary number is the sign bit. which tells you whether the aum-
ber is positive or negative.
A 0 s for positive, and a 1 is for negati

Sign-Magnitude Form

When a signed bimry number is ref d in sigr itude, the left-most bit is the sign
bit and the remaining bits are the magmlude bits. The magnitude bits are in true (uncomple-
mented) binary for both positive and neg: by For ple, the decimal number
+25 is expressed as an 8-bit signed binary number using the sign-magnitude form as

00011001
Sign bit SIS Magnitde bits
The decimal number —25 is expressed as
10011001

Notice that the only difference between +25 and —25 is the sign bit because the magnitude
bits are in true binary for both positive and negative numbers.
In the sign itude form, a negative number has the same magnitude bits as the
corresponding positive number but the sign bit is a 1 rather than a zero.

1's Complement Form
Pt:siti\‘c bers in 1's compl form are rey 1 the same way as the positive sign-

Negativ I however, are the 1's complements of the comrespon-
d.mg positive numbers, For example, using eight bits, the decimal number =25 is expressed as

the 1's complement of +25 (0011001} as
11100110

In the 1's complement form, a negative number is the 1's complement of the corre-
sponding positive number.

30 = DIGITAL FUNDAMENTALS

I EXAMPLE 2-14

Solution

Supplementary Problem

IEXAMPLE 2-15

Selution

2's Complement Form

Positive numbers in 2's pl form are rep 1 the sume way as in the sign-magni-
tude and 1's complement forms. Negative bers are the 2's compl of the ¢ T
ding positive numbers. Again, using eight bits, let us take decimal number 25 and express it
as the 2's complement of +25 (00011001),

11100111

In the 2's complement form, a negative number is the 2°s complement of the corre-
sponding positive number,

Express the decimal number —39 as an B-bit number in the sign-magnitude, 1's comple-
ment, and 2's complement forms.

First, write the 8-bit number for + 39,
00100111

In the sign-magnitude form, =39 is produced by changing the sign bit 1o a 1 and leav-
ing the magnitode bits as they are. The number is

10100111

In the I's complement form, —39 is produced by taking the 1's complement of +39
(00100111).

11011000

In the 2's complement form, —39 is produced by wking the 2's complement of +39
(00100111) as follows:

11011000 1's complement

E S—
11011001 2's complement”
Express +19 and —~19 in sig itude, 1s k and 2's }

The Decimal Value of Signed Numbers

Sign-magnitude Decimal values of positive and negative numbers in the sign-magnimde
form are determined by summing the weights in all the magnitude bit positions where there
ure 15 and ignoring those positions where there are zeros. The sign is determined by examina-
tion of the sign bit. This is illustrated by Example 2-15.

Determine the decimal value of this signed binary number expressed in sign-
magnitude: 10010101,

The seven

I bits and their po f-two weights are as follows:

NUMBER SYSTEMS, OPERATIONS, AND CODES ® 31

Summing the weights where there are 1s,
16+4+1=21
The sign bit is 1; therefore, the decimal aumber is —21.
Supplementary Problem Determine the decimal value of the sign-magnitude number 01110111.

I's Complement Decimal values of positive numbers in the 1's complement form are deter-
mined by summing the weights in all bit positions where there are s and ignoring those posi-
tions where there are zeros. Decimal values of negative numbers are determined by assigning
a negative value to the weight of the sign bit, summing all the weights where there are 15, and
adding 1 to the result. This is illustrated by Example 2-16.

”lExAMPI.EZ-'b . .
Determine the decimal values of the signed binary numb din 1's il

(a) 00010111 (b) 11101000

Solution (a) The bits and their powers-of-two weights for the positive number are as follows:
~FrEFrPRP
000101 11
Summing the weights where there are 15,
16+4+2+1=+23

(b) The bits and their powers-of-two weights for the negative number are as follows. Notice
that the negative sign bit has a weight of =27 or =128,

R
Ir1rro1o000
Summing the weights where there are 1s.
=128+ 64+ 324 8=-24
Adding 1 to the result, the final decimal number is
-4 4+1=-23

Supplementary Problem Determine the decimal value of the 1's complement number 11101011,

2% Complement Decimal values of positive and i bers in the 2's ph
ment form are determined by summing the weights in all bit positions where there are Is
and ignoring those positions where there are zeros. The weight of the sign bit in a nega-
tive number is given a negative value. This is illustrated by Example 2-17.

I EXAMPLE 2-17
Determine the decimal values of the signed binary numbers expressed in 2's

complement:
(a) 01010110 (b) 10101010

3z

DIGITAL FUNDAMENTALS

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:
-y
01010110
Summing the weights where there are 1s,
M+ 16+4+2=+86

{b) The bits and their powers-of-two weights for the negative number are as follows. Notice

that the negative sign bit has a weight of ~27 = 128, |

=T rrrraRr !

10101010 |

Summing the weights where there are 15, !
=128+ 32+ 8+2=—86

Dy ine the decimal value of the 2°s complement number 11010111,

From these examples, you can see why the 2's complement form is preferred for represent-
ing signed integer numbers: To convert to decimal, it simply requires a summation of weights
regardless of whether the number is positive or negative. The 1's complement system requires
adding | to the summation of weights for negative numbers but not for positive numbers.
Also, the 1's complement form is generally not used because two representations of zero
(D0DO0O00 or 11111111) are possible,

Range of Signed Integer Numbers that can be Represented
The range of magnitude of a binary number depends on the number of bits (n). Here, we have

used B-bit numbers for illustration because the B-bit grouping is in most
and has been given the special name byte. With one bﬂ: or ught bits, you can rcp:tscm 256
different numbers. With two bytes or sixteen bits, you can rep 65,536 diff

With four bytes or 32 bits, you can represent 4.295 X 10" different numbers. The formula for
finding the number of different combinations of bits is

Total combinations = 2°
For 2's complement signed numbers, the range of values for n-bit numbers is
=2 o H2'- 1)
where in each case there is one sign bit and n — | magnitude bits. For example, with four bits
you can bers in 2's | ranging from —(2") = 80 2’ — 1 = +7.

Similariy, wn.'h eight bits you can go fr::m =128 w +127, with sixteen bits you can go from
—32,768 to +32,767, and so on.

Floating-Point Numbers

To represent very large Integer (whole) numbers, many bits are required. There is also a
problem when numbers with both integer and fractional pants, such as 23.5618, need to be
represented, The floating-point number system, based on scientific notation, is capable of
representing very large and very small numbers without an increase in the number of bits and
also for representing numbers that have both integer and fractional components; it uses
powers of ten.

A floating-puoint number (also known as a real number) consists of two parts plus a sign.
The mantissa is the part of a floating-point number that represents the magnitude of the

NUMBER SYSTEMS, OPERATIONS, AND CODES = 32

number. The exponent is the part of a floating-point number that represents the number of
places that the decimal point (or binary point) is to be moved.

A decimal example will be helpful in inderstanding the basic concept of floating-point
numbers. Let us consider a decimal number which, in integer form, is 241,506,800. The man-
tissa is . 24 15068 and the exponent is 9, When the integer is expressed as a floating-point num-
ber. it is normalized by moving the decimal point to the left of all the digits so that the man-
tissa is a fractional number and the exponent is the power of ten. The floating-point number is
written as

0.2415068 = 10"

For binary floating-point numbers, the format is defined by ANSVEEE Standard 754- 1985
in three forms: single-precision, double-precivion, and extended-precision. All these have the
same basic formats except for the number of bits. Single-precision floating-point numbers
have 32 bits, double-precision numbers have 64 bits. and extended-precision numbers have B0
bits. We will restrict our di ion to the single-precision floating-point format.

Single-Precision Floating-Point Binary Numbers In the standard format for a single-preci-
sion binary number, the sign bit () is the lefi-most bit, the exponent (E) includes the next
eight bits, and the mantissa or fractional part (F) includes the remaining 23 bits, as shown
next.

32 bits
|5 | Esponcot(® | Maniissa irction. P
1 biz 8 hits 23 hits

In the mantissa or fractional part, the binary point is understood to be to the left of the 23
bits. Effectively, there are 24 bits in the mantissa becanse in any binary number the lefi-most

(most significant) bit is always a 1. Therefore, this 1 is und, d to be there although it does
not oceupy an actual bit position.

The eight bits in the exp a biased exy . which is obtained by adding
127 to the actual exponent. The purpuﬁc of the bias is to allow very large or very small num-
‘bers without requiring a separate sign bit for the exp The bissed exp allows a

range of actual exponent values from — 126 to + 128,

To illustrate how a binary number is expressed in floating-point format, let us use
1011010010001 as an example, First, it can be expressed as 1 plus a fractional hinary number
by moving the binary point 12 places to the left and then multiplying by the appropriate power
of two.

1011010010001 = 1011010010001 % 2%

Assuming that this is & positive pumber, the sign bit ($) is 0. The exponent, 12, is expressed as
a bissed exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is
expressed as the binary number 10606101 1. The mantissa is the fractional part (F) of the binary
number, 011010010001, Because Ihcrc is always a 1 to Ihc left of the I:lma:r)' pom! in Ihc

er-0f-two exy ion, it is not included in the The T 1l -7
nu.m'bcr is

5 E F
[0 101011 iUIIOIDOIMlm.IJOO(m!

MNext, let us see how to evaluate a binary number that is already in floating-point format,
The general approsch to determining the value of a floating-point number is expressed by the
following formula:

34 = DIGITAL FUNDAMENTALS

| IEXA.MPLE 2-18

Number = (— D1 + F)2*'¥)
To illustrate, let us consider the following floating-point binary number:
3 E F
[1] 10010001 | 10001110001000000000000 |

The sign bit is 1. The biased exponent is 10010001 = 145. Applying the formula, we get

Number = (—1)'(1.10001110001)2' "'y
= (= 1)1.10001110001)(2'%) = —1100011100010000000

This floating-point binary number is equivalent w0 —407,688 in decimal. Since the exponent
can be any number between —126 and + 128, extremely large and small numbers can be
expressed. A 32-bit floating-point number can replace a binary integer number having 129
bits. Because the exponent determines the position of the binary point, numbers containing
bhoth integer and fractional parts can be represented.

There are two exceptions o the format for floating-point numbers: The number 0.0 is
represented by all Os, and infinity is represented by all 1s in the exponent and all 0s in the
mantissa.

Convert the decimal number 3.248 X 10° to a single-precision floating-point binary
number, ”

Solution Convert the decimal number to binary.
3.248 x 10" = 32480 = 111111011100000, = 1.11111011100000 % 2"

| The MSB will not occupy a bit position because it is always a 1. Therefore, the mantissa

is the fractional 23-bit binary number 11111011100000000000000 and the biased expo-
| nent is

14 + 127 = 141 = 10001101,
The complete floating-point number is
| 1] | 10001101 | 1111101 1100000000000000
pl tary Problem D ine the binary value of the following floating-point binary number:
0 10011000 100001000101001 10000000
|
SECTION 2-6

REVIEW

1. Express the decimal number +% as an 8-bit binary number in the sign-magnitude system.

2. Express the decimal number —33 as an B-bit binary number in the 1's complement
system.

3. Express the decimal number —46 as an 8-bit binary number in the 2's complement
system.

4. List the two parts of a signed, floating-point number,

MUMBER SYSTEMS, OPERATIONS, AND CODES

'2-7 | ARITHMETIC OPERATIONS WITH SIGNED NUMBERS

In the last section, you leamed how signed numbers are represented in three different forms.
In this section, you will leam how signed numbers are added, subtracted, multiplied, and

divided. B the 2's | form for rey ing signed bers is the most
widely used in I and microp bhased systems, the coverage in this section is
limited to 2°s compl ithmetic. The covered can be extended to the other

P
forms if necessary.

After completing this section, you should be able to

® Add signed binary numbers ® Explain how computers add strings of numbers

= Define overflow ® Subtract signed binary numbers ® Multiply signed binary numbers
using the direct addition method = Multiply signed binary numbers using the partial prod-
ucts method - ® Divide signed binary numbers

Addition
The two numbers in an addition are the addend and the augend. The result is the sum. There
are four cases that can occur when two signed binary numbers are added.

1. Both numbers positive
2. Positive number with magnitude larger than negative number
3. Negative number with magnitude larger than positive number
4. Both numbers negative

Let us take one case at a time using 8-bit signed bers as iples. The equivalent decimal
numbers are shown for reference.
Both numbers positive: Q0000111 7
00000100 + 4
00001011 1
The sum is posi_h've and 15 therefore in true pl 1) binary.
Positive number with magnitude larger than negative number:
00001111 15
+ 11111010 + -6
Discard camry + 1 00001001 9
The final carry bit is discarded. The sum is positive and therefore in true pl i)
binary.
Negative number with magnitude larger than positive number:
00010000 16
+ -4
1111000 -&
The sum is negative and in2's I form.
Both numbers negative:
111011 =5
+ 11110111 + -9

Discard carry —— 1 11110010 =14

fore in 2's ¢ 1 form.

The final carry bit is discarded. The sum is negative and th

35

36 = DIGITAL FUNDAMENTALS

I EXAMPLE 2-19%

The above di ions lead to the following 1
1. Addition of two positive numbers yields a positive number,

2. Addition of a positive number and a smaller negative number yiclds a positive
number.

3. Addition of a positive number and a larger negative yields a negative nu'mbenn
2's complement.

In a computer, the negative numbers are stored in 2's complement form so, as you can see,
the addition process is very simple: Add rhe two monbers and discard any final carry bir.
Overflow Condition When two bers are added amd the number of bits required to repre-
sent the sum exceeds the number of bits in the two numbers, an overflow results as indicated
by an incorrect sign bit, An overflow can occur only when both numbers are positive or both

are negative. The following 8-bit ple will illustrate this condition.
oo 126
00111010 + 58
10110111 183
Sign incormect —— T T
Magnitude incorrect .

In this example the sum of 183 requires eight magnitude bits. Since there are seven magni-
tude bits in the numbers (one bit is the sign), there is a carry into the sign bit which produces
the overflow indication,

Numbers are Added Two at a Time Now let us look at the addition of a string of numbers,
added two at a time. This can be accomplished by adding the first two numbers, then adding
the third number to the sum of the first two, then adding the fourth number to this result, and
so on, This is how computers add strings of numbers. The addition of numbers taken two at a
time is illustrated in Example 2-19.

Add the signed numbers: 01000100, 00011011, D0001 110, and 00010010

Salutic The equivalent decimal additions are given for reft
68 01000100
+ 27 . Add st two numbers
95 01011111 1stsum . |
+ 14 + 00001110 Add 3rd number 1
109 01101101 2nd sum
£ 18 00010010 Add 4th number |
127 01111111 Final sum
Supplementary Problem Add 00110011, 10111111, and 01100011. These are signed numbers. .

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend) from
+9 {the minuend) is equivalent to adding —6 to +9. Basically. the subtraction eperation
changes the sign of the subtrakend and adeds it to the minuend. The result of a subtraction is
called the difference.

NUMBER SYSTEMS, QPERATIONS, AND CODES

The sign of a positive or negative binary number is changed by taking its
2's complement.

For example, when you take the 2s complement of the positive number 00000100 (+4). you
get 11111100, which is —4 as the following sum-of-weights evaluation shows:

—I28+64 + 32+ 16+8+4=—4

As another example, when you take the 2's complement of the negative number 11101101
{=19), you get (0010011, which is + 19 as the following sum-of-weights evaluation shows:

G+2+1=19

Since subtraction is simply an addition with the sign of the subtrahend changed, the
process is stated as follows:

‘To subtract two signed numbers, take the 2’s complement of the subtrahend and add.
Discard any final corry bit.

Example 2-20 illustrates the subtraction process.

IEXAMFLE 2-20
Perform each of the following subtractions of the signed numbers:

fap QOO — (K001 T (b} COOOLIO0 — 11LI011]
fep 11100111 = 00010011 (d) 10001000 = 11100010

Selution Like in other exampies, the equivalest decimal subtractions are given for reference,
(a) Inthiscase. 8~ 3=8+ (-3)=5

[EEETHEVY] Minuend (+8)
= 1rne 2's complement of subtrahend {—3)
Discard carry » 1 OGO Difference (+5)
(b) In this case, 12 ~ (~9) =12 + 9 =21,
[LECURTEH Minuend (+12)

(0001001 2's complement of subtrahend (+9)
Q00101 Difference (+21)

(c) In this case, =25 = (+19) = ~25 + (—19%) = —44,

11100111 Minuend {—25)

+ FLHIeL 2's complement of subtrahend (= 19)

scard carry o B LT [E] Difference (—44)
(d) In this case, 120 — (= 30) = — 120 + 30 90.

T0W0H D Minuend (1200
= 0i1nae 2's complement of subtrahend (-+ 34
1010110 Dilference { — %0

Supplementary Preblem Subtract D1000111 from D101 1000,

37

38 = DIGITAL FUNDAMENTALS

EXAMPLE 2-21

Solution

Multiplication
The bers in a multiplication are the multiplicand, the iplier. and the product. These
are illustrated in the fullowmg decimal mu]hpluanun
B Multiplicand
2 3 Muliplier
24 Product

Since le]hp]I.calJﬂn is equivalent to adding & number to itsell a number of times equal to the

Iuipli fore, the multiplication operation in most computers is accomplished using
addition. As you have ulrwrl}' seen, subtraction is done with an adder; now let us sce how
multiplication is done,

Direct addition and partial products are two basic methods for performing multiplication
using addition. In the direct addition method, you add the multiplicand a number of limes
equal to the multiplier. In the previous decimal ple (3 X 8), three multiplicands are
added: § + 8 + & = 24, The disad ige of this approach is that it b very lengthy if
the multiplier is a large number. For example, 1o multiply 75 > 350, you must add 350 to
itself 75 times. Incidentally, this is why the term rimes is used to mean multiply.

The partial products method is pﬂ'haps the more common one because it reflects the way
you multiply longhand. The mult i is multiplied by each multiplier digit beginning with
the least significant digit. The result of the multiplication of the multipli by a multipli
digit is called a partial product. Each successive partial product is moved (shifted) one place
1o the left and when all the partial products have been produced, they are added to get the final
product. Here is a decimal example.

239 Muliiplicand
¥ 123 Multiplier
77 15t partial product (3 X 239)
478 2nd partial product (2 X 239)
+239 3rd partial product (1 X 239)
29,397 Final product

The sugn of the product of & multiplication depends on the signs of the multiplicand and the
ling 1o the following two rules:

u I the signs are the same, the product is positive.
= If the signs are different, the product is negative.

When two binary numbers are multiplied, both bers must be in true (uncomplemented)
form. The direct addition method is |I]ueruwd in Example 2-21 adding two binary numbers at
atime.

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 (multiplier)
using the direct addition method. |

Since both numbers are positive, they are in true form, and the product will be positive.
The decimal value of the multiplier is 4, so the multiplicand is added to itself four times as
follows:

01001101 15t time

2nd time
10011010 Partial sum
01001101 3rd time
11100111 Partial sum I

£ 01001101 4th time
100110100 Product

NUMBER SYSTEMS, OPERATIONS, AND CODES = 39

Since the sign bit of the multiplicand is 0, it has no effect on the outcome. All of the bits
in the product are magnitude bits,

Supplementary Problem Multiply 01100001 by 0000D110.

Now, let us lock at the partial products method of binary multiplication, The basic steps in
the process are as follows:

Step 1. Determine if the signs of the multiplicand and multiplier are the same or different.
This determines what the sign of the product will be.

Step 2. Change any negative number 10 true (unc I i) form. B most

T store negali bers in 2% pl al's pl perati

is required to get the negative number into true form.

Step 3. Starting with the least significant multiplier bit, generate the partial products.
When the multiplier bit is 1, the partial product is the same as the multiplicand.
When the multiplier bit is 0, the pantial product is zero. Shift each successive

partial product one bit to the left.

Step 4. Add each successive pantial product to the sum of the previous partial products o
get the final product.

Step 5. If the sign bit that was d ined in step 1 is negative, take the 2's pl
of the product. If positive, leave the product in true form. Attach the sign bit 1o the
product.

Example 2-22 illustrates these steps.,

'E’“’“'“’"E 2=22) juldply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplicr).

Solution Step 1. The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The sign
bit of the product will be | (negative).

Step 2. Take the 2's complement of the multiplier to put it in true form.
11000101 —2 00111011

Steps 3 and 4. The maltiplication proceeds as follows. Notice that only the magnitude bits
are used in these steps.

1010011 Multiplicand

Multiplier

1010011 15t partial product

+ 1010011 2nd partial product

11111001 Sum of 1st and 2nd

—+ 0000000 3rd partial product
01111601 Sum

A+ 1010011 4ih partial product
1110010001 Sum

+ 1010011 5th partial product

10001 1000001 Sum
+ 1010011 6th partial product
1001100100001 Sum
+0000000 Tih partial product
1001100100001 Final product

40 w DIGITAL FUNDAMENTALS

Supplementary Problem

Step 5.Since the sign of the product is a 1 as determined in step 1. take the 2's comple-
ment of the product.

1001100100001 ——— 0110011011111
Attach the sign bit
—*1 0110011001111

Verify the multiplication is comrect by converting to decimal numbers and performing the
multiplication.

Division
The numbers in a division are the dividend, the divisor, and the quotient. These are illus-
trated in the following standard division format.

dividend
divisor

= quotient
The division operation in P is plished using sut ion. Since sub ion is
done with an adder, division can also be accomplished with an adder.

The result of a division is called the guotienr; the quotient is the number of times that the
divisor will go into the dividend. This means that the divisor can be subtracted from the divi-
dend a number of times equal to the quotient, as illustrated by dividing 21 by 7.

21 Dividend
=17 Ist subtraction of divisor
14 st partial remainder
=1 2nd subtraction of divisor
7 2nd partial remainder
=1 3rd subtraction of divisor
0 Zero remainder
In this simple example, the divisor was subtracted from the dividend three times before a
i of zero was obtained. Therefore, the quotient is 3.

The sign of the quotient depends on the signs of the dividend and the divisor according to

the following two rules:

= If the signs are the same, the quotient is positive.
» If the signs are dilTerent, the quotient is negative.

When two binary numbers are divided, both numbers must be in true (uncomplemented)
form. The basic steps in a division process are as follows:

Step 1. Determine if the signs of the dividend and divisor are the same or different. This
determines what the sign of the quotient will be. Initialize the quotient to zero.

Step 2. Subtract the divisor from the dividend using 2's complement addition o0 get the
first partial remainder and add 1 to the quotient. If this partial remainder is
positive, go to step 3, If the partial remainder is zero or negative, the division is
complete,

Step 3. Subtract the divisor from the partial remainder and add 1 to the quotient. If the
result is positive, repeat for the next partial remainder. If the result is zero or
negative, the division is complete.

Continue 1o subtract the divisor from the dividend and the panial remainders until there is a

zero or a negative result. Count the number of times that the divisor is subtracted and you
have the guotient, Example 2-23 illustrates these steps using 8-bit signed binary numbers,

I EXAMPLE 2-23

Solution

Supplementary Problem

| SECTION 2-7
REVIEW

NUMBER S5YSTEMS, OPERATIONS, AND CODES = 41

Divide 01100100 by 00011001,

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The signs of both numbers are positive, so the quotient will be positive. The quo-
tient is initially zero: 00000000 : 3
Subtract the divisor from the dividend using 2's compl addition (b
that final carmies are discarded).

Q1100100 Dividend

+ 11100111 2's complement of divisor
01001011 Positive Ist partial remainder
Add 1 to quotient: 00000000 + 00000001 = 00000001

Subtract the divisor from the 1st partial inder using 2's compl, addition.

0101011 Ist partial remainder
+ 11100111 2's complement of divisor
00110010 Positive 2nd partial re
Add | 1o quotient: 00000001 + 00000001 = OOKKI010,
Subtract the divisor from the 2nd partial inder using 2's pl addi-
tion,

00110010 2nd partial remainder
+ 11100111 2's complement of divisor
00011001 Positive 3nd partial remainder
Add 1 to quotient: GO0 + 00000001 = 00000011,

Subtract the divisor from the 3rd partial inder using 2's plement addi-
tion.

00011001 3rd partial remainder
+1 111 2's complement of divisor
00000000 Zero remainder
Add 1 1o quotient: 00000011 + 00000001 = OONT00 (final quotient). The
process is complete.

Verify that the process is correct by conventing to decimal numbers and performing the

division.

1. List the four cases when numbers are added.

2. Add 00100001 ard 10111100,

3. Subtract 00110010 from 01110111,

4. What is the sign of the product when two negatr bers are multiplied?
5. Multiply 01111111 by 00000101,

6. What s the sign of the quotient when a positive number is divided by a negative
number?
7. Divide 00110000 by 00001100.

42 = DIGITAL FUNDAMENTALS

{25850 HEXADECIMAL NUMBERS

The hexadecimal number system has sixieen digits and is used primarily as a compact way
ofmhymsmmugbnmmbmbmxntumwywmwmw
and hexadecimal. As you are prob mrelnnshrknmnumbmmdimmllwmdmd
write because it is easy to drop or ipose a bit. Since and

understand only 1s and Os, |t||mcusarywuxlhmdlmluwhmympmmnm“mium
language.” Imagine writing a sixteen-bit i ion for a lynmmlsand
Dsltlxmuchmefﬁmlmmehuldemmalofmm“mbeﬂm:nvmdm
Section 2-9, Hexadecimal is widely used in computer and

After completing this section, you should be able to

= List the hexadecimal digits » Count in hexadecimal Il:anmfrmnbinlrymm
decimal = Convert from hexadecimal to binary ® Convert from hexadecimal . -

to decimal = Convert from decimal to hexadecimal = Add hexadecimal numb }

= D 2's il ofah imal number ® Subtract hexadecimal numbers

The hexadecimal number system has a base of sixteen: that is, it is composed of 16 digits
and alphabetic characters. Most digital systems process binary data in groups that are multi-
ples of four bits, making the hexadecimal number very convenient because each hexadecimal
digit represents a 4-bit binary number (as listed in Table 2-3),

» TABLE 2-3 z
:
0000 a I_;
1 oo 1 "

2 (L[] 2z

3 0011 b

4 0100 4

5 0101 5

o 01 6

T o1l T

& 1000 8

g (LA} 4

10 1010 A

11 1o B

12 1100 L o2

13 (NLHT b

14 Hin B

F

15 1

‘Ten numeric digits and six alphabetic characters make up the hexadecimal number system.
The use of letters A, B, C, D, E, and F to represent numbers m:ly wem strange at ﬁrst‘ bul
keep in mind that any number system is only a set of y If you
what quantities these bol then the form of the symbols themselves is less
|mpormnl om:e you get nocnsmmed to using them. We will use the subscript 16 to designate

bers to avoid confusion with decimal numbers. Sometimes, you may see an
“h" following a hexadecimal number.

NUMBER SYSTEMS, OPERATIONS, AND CODES = 43

Counting in Hexadecimal

How do you count in hexadecimal once you get 1o F? Simply start over with another column
and continue as follows:

10, 11,12, 13, 14, 15, 16, 17, 18, 19, 1A, IB. IC, 1D, 1E, IF, 20, 21, 22, 23, 24, 25, 26,
27,28,29,2A, 1B, 2C, 2D, 2E, 2F, 30, 31... . .

With two hexadecimal digits, you can count up to FFe, which is decimal 255. To count
beyond this, three hexadecimal digits arc needed. For instance, 100, is decimal 256, 101, is
decimal 257, and so forth, The maximum 3-digit hexadecimal number is FFF,,. or decimal
4095. The maximum 4-digit hexadecimal number is FFFF ,, which is decimal 65,535,

Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a very straightforward procedure. Simply break
the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit group
with the equivalent hexadecimal symbol as illustrated in Example 2-24,

'mMPLE 2-24
Convert the following binary numbers to hexadecimal:

(1) 1100101001010111 (k) LLI111000101101001

Solution (a) 1100101001010111 () Q0111111000101 101001
L [
C A 5 7 =CAST, 3 F 1 6 9 =3FI69,

Two zeros have been added in part (b) to complete a 4-bit group at the left.
Supplementary Problemy Convent the binary number 1001111011110011100 to hexadecimal.

Hexadecimal-to-Binary C sion

To convert from a hexadecimal number to a binary number, reverse the process and replace
each hexadecimal symbol with the appropriate four bits as illustrated in Example 2-25.

|EXAMPI.EZ-25
Detentsine te bivary ninibers for the following hexadecimal mmk

(a) 10A4,, (b) CFEE;y (c) 9742,

Solution (m) 10 A 4 M C F 8 E © 9 7 4 2
— b4 4 4 L1 LR T I | .
1000010100100 1100111110001110 100101 110100001 (¢
In part (a), the MSB is understood to have three zeros preceding it, thus forming a 4-bit
group,

Supplementary Problem Convert the hexadecimal number 6BD3 to binary.

44 = DIGITAL FUNDAMENTALS

IEXAMPI.E 2-26

Solution

Supplementary Problem

I EXAMPLE 2-27

Salution

Supplementary Problem

It should be clear that it is much easier 1o deal with a hexadecimal number than with the
equivalent binary number. Since conversion 18 so easy, the hexadecimal system is widely used
for rep ing binary bers in i i and displ

Hexadecimal-to-Decimal C

One way to find the decimal equivalent of a hexadecimal number is to first convert the hexa-
decimal number 1o binary and then convert from binary to decimal, Example 2-26 illustrates
this procedure,

Convert the following hexadecimal bers to decimal

(@) 1Cis (b} ABSys

R ber, convert the hexadecimal number to binary first, then to decimal.
(a) 1 €
4 4

DOOITI00=2'+2° + P =16+ 8+ 4 =28,

(b) A B 5
'R
TOT010000100 = 2" +2° + 27+ 22 + 2 = 2048 + 512+ 128 + 4 + 1 = 2693,

Convert the hexadecimal number 6BD to decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multiply the
decimal value of each hexadecimal digit by its weight and then take the sum of these products.
The weights of a hexadecimal number are i ing powers of 16 (from right to left), For a
4-digit hexadecimal number, the weights are

160 16t 16 16
4096 256 16 |
Example 2-27 shows this conversion method.

Convert the following hexadecimal numbers to decimal

(a) E5y5 (b) B2FB

Recall from Table 2-3 that letters A through F represent decimal numbers 10 through 15,
respectively.

(a) ESg=(EX 16)+ (53X 1) = (14 X 16) + (5 X 1) = 224 + 5 = 229,

(b) BIFE,, = (B X 4096) +(2X256) +(Fx 16) +(8x1)
= (11 % 4096) + (2 X 256) + (15 % 16) + (8 X 1)
= 45056 + 512+ 240 + 8 =45816,

Convert 604, to decimal,

NUMBER SYSTEMS, OPERATIONS, AND CODES

Decimal-to-Hexadecimal Conversion

Repeated division of a decimizl number by 16 will produce the equivalent hexadecimal
number, formed by the inders of the d The first inder produced is the least
significant digit (LSD). Esch successive division by 16 yields a remainder that becomes a
digit in the equivalent hexasdecimal number. This procedure is similar to repeated division by
2 for decimal-to-binary conversion that was covered in Section 2-3. Example 2-28 illustrates
the procedure. Note that when a quotient has a i part. the fractional part is multiplied
by the divisor to get the remainder,

|EXAMPLE 2-28
Convert the decimal number 630 1o hexadecimal by repeated division by 16,

Solution Hexudecimal
remainder
630
e 40625 = (625 X 16 = 10 =
2 .

O s osxiE=8= §-

1]
?1—'

I‘ﬁ=u',;:s- P25 K 16 =2 = —J,
b

IR

- Stop when whole number
quotient is zero.)
MSD -~ LsSD

plementary Problem onvert decimal 2591 1w hexadecimal.
i ry Probie: [decimal 2591 wo b fecimal

Hexadecimal Addition

A Hexadecimal mumber

45

Addition can be done dircctly with hexadecimal bers by bering thar the hexadeci- Hexadecimal i a comvenient

mal digits 0 through 9 are cquivalent to decimal digits 0 through 9 and that hexadecimal digits way to represent binary

A through F are equivalént to decimal numbers 10 through 15, When adding two bexadecimal numbens.
numbers, use the following rules. (Decimal numbers are indicated by a subseript 10.)

1. Inany given colurmn of an addition problem, think of the two hexadecimal digits in
terms of their decimal values. For instance, 51 = §jgand Cp = 12

2. I the sum of these two digits is 15, or less, bring down the corresponding hexadeci-
mal digit.

3. If the sum of these 1wo digits is greater than 15,5, bring down the amount of the sum
that exceeds 16, and carry a 1 to the next column.

46 = DIGITAL FUNDAMENTALS

EXAMPLE 2-29 f
Add the ollowing bexadecimal pum

(a) 2345 + 16y

Solution (a) 23,
+1614

”Iﬁ

() 5Bis
+22y

TAus

(e} 2By
+ B4y

ulﬁ

«) DFyq
+ AC;s

18B,,

(b) 58+ 224 (c} 2B, + 84, (d) DF,,+ ACg

right column: 3,5 + 6y = 3y + 6jg = 9y = 9y
left column: 245+ Lig = 25 + lio = 310 = 3y

right column: 8y + 246 = Byo + 2p = 1040 = Ass
leftcolumn: 5y + 2= 5;g+ 25 = Tyo =Ty

right column: By + 4y = 11y + 410 = 15y = Fyg
left column: 245+ 815 = 24g + B1p = 1040 = Ags

right column: Fys + Cp= 15 + 12,4 =27y
2714 = 1645 = 11,4 = Bys with a 1 camry
lefteolumn: Dyg + Agg + 1jp = 1315+ 10ip + Ljg = 245
24y — 1649 = B)p = By with a | camry

Supplementary Problem Add 4C, and 3A,.

Hexadecimal Subtraction

As you have leamed, the 2°s complement allows you o subtract by adding binary numbers.
Since a hexadecimal number can be used to represent a binary number, it can also be used w
represent the 2's complement of a binary number.

There are three ways o get the 2's complement of a hexadecimal number, Method 1 is the
maost common and easiest to use. Methods 2 and 3 are aliernate methods.

Method 1. Convert the hexadecimal number to binary. Take the 2's complement of the
binary number. Convert the result to b jecimal. This is ill; d in
Figure 2-3.

Method 2. Subtract the hexadecimal number from the maximum hexadecimal number
and add 1. This is illustrated in Figure 2-4.

: . % %
Hexadecimal Binary i binary in beaadecimaal
Example:
2A " [LOluipi 1 lmotlo — D&

» FIGURE 2-3

NUMBER 5YSTEMS, OPERATIONS, AND CODES = 47

1
; Vecowpleman | |
| Henadecima |—] Sbomctfom L L dectuat [2 ncomplemeat
i | Tt | i hexadecimal
| | plas 1
] | |
Examphe:
0 s FF-IA DEs1 ’__.-I. D6

4 FIGURE 2-4

Method 3. Write the sequence of single hexadecimal digits. Write the sequence in
reverse below the forward sequence, The 1's complement of cach hex digit
is the digit directly below it. Add 1 tw the resulting number 1o get the 2's
complement. This is illustrated in Figure 2-5.
S — i - e -
| " g -+ . . 1's complement o
- B12345a7THYABCDEF " o s complement
Mesdecimal = L ppcpA9 k76543210 l """I";li";""‘] | inheradecinat
i
Example:
| L]
; TEOABCDEF I
o BT6[543210 I S pe
~ | :

& FIGURE 2-5

IEJ(AMDLE 2-30

Solution

Subtract the following hexadecimal numbers:

{a) B4y — 2A4

@) 24, = D0101010

2's complement of 24, =
By

+ Dbyg

A5A,,

The difference is SA ..

{h) OB, = DOKIDIL

() C3ys — 0By,

010110 = Diy,

Add

Dirop carry, as in 2's complement addition

2 complement of 0B, = 11110101 = F5,,

Clyy
+ Pl
1B8,,

{using Method 1)

(using Method 1)

Add
Drop carry

48 = DIGITAL FUNDAMENTALS

Supplementary Problem

I SECTION 2-8
REVIEW 2

The difference is BS,,.

Subtract 173, from BCD,.

1. Convert the following binary numbers to hexadecimal:

{a) 10110011 (b) 110011101000
2. Convert the following hexadecimal numbers to binary:
(a) 57. (b) 3A5, (<) F80B:

3. Convert 9830, to decimal.
4. Convert the decimal number 573 to hexadecimal,
5. Add the following hexadecimal numbers directly:
(a) 18+ 34, (b) 3Fy, + 2As
6. Subtract the following hexadecimal numbers;:
(3) 75i0— 2134 (b) 94y, — 5C;,

2-9 . OCTAL NUMBERS

Like the hexadecimal number system, the octal number system provides a convenient way 1o
express binary numbers and codes, However, it 1s used less frequently than hexadecimal in
conjunction with computers and microprocessors (o express binary quantities for input and
oulput purposes.

After completing this section, you should be able to

= Wnite the digits of the octal number system ® Convert from octal to decimal

= Convert from decimal to octal = Convent from octal to binary ® Convert from binary
o octal

The octal number system is composed of eight digits, which are
0,1,2,3,4.5,6,7. It has a base of 8.
To count above 7, begin another column and start over:
10, 11,12, 13,14, 15, 16, 17,20, 21, ..
Counting in octal is similar (o counting in decimal, except that thc dtglls 8 and 9 are not

used. To distinguish octal numbers from decimal bers or E we will
use the subscript 8 w indicate an octal number. For instance, 15, in octal is equivalent to 13,
in decimal and D in hexadecimal, Sometimes, you may see an “o”or a “Q” following an octal

number.

Octal-to-Decimal Conversion

Since the octal number system has a base of eight, cach successive digit position is an increas-
ing power of eight, beginning in the right-most column with &". The evaluation of an octal

NUMBER 5YSTEMS, OPERATIONS, AND CODES = 4%
number in terms of its decimal equivalent is i

by multiplying each digit by its
weight and summing the pmducl.!. as illustrated here I’ur 2374,

Weight: 8° 8% 8' 8°
Octal number:2 3 7 4

2374, = (2K 8 (AR E) (TR + 4 xEY
=(1X512)+(3IXN64)+(THXE) +(4x1)
= 1024 4+ 192 4+ 56 + 4 =126y

Decimal-to-Octal Conversion

A method of converting a decimal number 1o an octal number is the repeated division-by-8
method, which is similar to the method used in the conversion of decimal numbers to binary
or o hexadecimal. To show how it works, let us convert the decimal number 359 to octal.
Each successive division by 8 yields a remainder that becomes a digit in the equivalent octal
number. The first remainder generated is the least significant digit (LSD).

Remainder
=4 BIS— 0815 x8B= 7

L2

54

I'F

&

=55——05xE= 4

T

o

=0.625-0625X8= 5
|

Stop when whole number

547 Octal number
quotient is zero T 1
MSD -~ LSD

Octal-to-Binary Conversion
Becavse cach octal digit can be represented by a 3-bit binary number, it is very casy to convert

from octal 1o binary. Bach octal digit is represented by three bits as shown in Table 24,

JIABLE2-S e
Octal{binary cormvenion

OCTAL DIGIT [} i 2 3 4 5 6 1
BINARY L]

(Ui 010 (Ui 100 10 Hi i

To convert an octal number to a hinary number, simply replace each octal digit with the
appropriate three bits. This procedure is illustrated in Example 2-31

50 ® DIGITAL FUNDAMENTALS

EXAMPLE 2-31 = = e) o]
Convert each of the following octal numbers to binary:

(@) 133 (b) 255 (c) 1405 (d) 75265

Solution (a) 1 3 ® 25 (@ 140 (7526
& 11 Ll Ll
001011 010101 001100000 111101010110

Supplementary Problem Convert each of the binary numbers to decimal and verify that each value agrees with the
decimal value of the corresponding octal number.

Binary-to-Octal Conversion

Conversion of a binary number to an octal number is the reverse of the octal-to-binary conver-
sion. The procedure is as follows: Start with the right-most group of three bits and, moving
from right to left, convert each 3-bit group to the equivalent octal digit. If there are not three
bits available for the left-most group, add either one or two zeros to make a complete group.
These leading zeros do not affect the value of the binary number.

| I EXAMPLE 2-32
| Convert each of the following binary numbers to octal:

(a) 110101 (b) 101111001 () 100110011010 (d) 11010000100

Solution (a) 110101 (b) 101111001
g i G g i
6 5=65 5 7 1=571,
(c) 100110011010 (d) 011010000100
B S i i i 1 i s e
4 6 3 2=4632 32 0 4=3204,

Supplementary Problem Convert the binary number 101010100011 1110010 to octal.

SECTION 2-9 ¢
I REVIEW 1. Convert the following octal numbers te decimal:

(a) 73, (b) 125,
2. Convert the following decimal numbers to octal:
(a) 981, (b) 163y
3. Comvert the following octal numbers to binary:
(a) 46, (b) 723, (c) 5624,
4. Convert the following binary numbers to octal:
(a) 110101111 (b) 1001100010 (<) 10111111001

NUMBER 5YSTEMS, OPERATIONS, AND CODES =

[2-10 BINARY CODED DECIMAL (BCD)

Binary coded decimal (BCD) is 4 way to express each of the decimal digits with a binary
code. There are only ten code groups in the BCD system, so it is very easy to convert
between decimal and BCD. Because we like to read and write in decimal, the BCD code
provides an excellent interface 1o binary systems, Examples of such interfaces are keypad
inputs and digital readouts.

After completing this section, vou should be able 1o

= Convert each decimal digit to BCD = Express decimal numbers in BCD
m Convert from BCD to decimal = Add BCD numbers

The 8421 Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means
that each decimal digit.) through 9, is represented by a binary code of four bits. The designa-
tion 8421 indicates the binary weights of the four bits (2°, 2%, 2', 2°). The ease of conversion
between 8421 code numbers and the familiar decimal numbers is the main advantage of this
code. All you have to remember are the ten binary combinations that represent the ten decimal
digits as shown in Table 2-5, The 8421 code is the predominant BCD code, and when we
refer to BCD, we always mean the 8421 code unless otherwise stated.

TABLE 2-5 o 1 2 3 7 5

Decimal/BED = DECIMAL DIGIT z
BCD

Invalid Codes You should realize that, with four bits, sixteen numbers (0D through 1111)

can be represented but that. in the 8421 code, only ten of these are used. The six code combi-
nations that are not used—1010, 1011, 1100, 1101, 1110, and 111 1—are invalid in the 8421
BCD code.

To express any decimal pumber in BCD., simply replace each decimal digit with the appro-
priate 4-bit code, as shown by Example 2-33.

| EXAMPLE 2-33
Convert each of the lollowing decimal numbers 1o BCD:

(a) 35 (b) 98 (c) 170 (d) 2469
Solution (a) i 5 b 9 8
il i1 41
00110101 10011000
(c) 1 7 0 @ 2 4 6 9
i Y e | B
000101110000 0010010001101001

Supplementary Problem Convert the decimal number 9673 1o BCD.

f 7 k]

000G D001 0010 0011 0100 0101 0110 011 1000 1001

In BCD, 4 bits represent
each decimal digit.

51

52

® DIGITAL FUNDAMENTALS

I EXAMPLE 2-34

Solution

Supplementary Problem

| EXAMPLE 2-35

Solution

Supplementary Problem

Tt is equally easy 1o determine a decimal number from a BCD number. Start at the right-
most bit and break the code into groups of four bits. Then, write the decimal digit represented
by each 4-bit group, Example 2-34 illustrates.

Convert cach of the following BCD codes to decimal:

(a) 10000110 (b) 001101010001 () LODIOI00O1 1 FO00D
(m) 10000110 (b) 0OLLOLOI000L (c) 1001010001110000
i 4 U T A A
8 6 35 1 9 4 7T 0

Convent the BCD code 100000100010011101 10 w decimal.

BCD Addition
BCD is anumerical code and can be used in a.nl:hmcnc O}I:Ialllll'lh A:Iclllinn is Ihemusl important
operation because the other three operati and division) can be

accomplished by the use of addition. Here is bow 10 add two BCD numbers:

Step 1. Add the two BCD numbers, using the rules for binary addition in Section 24,

Step 2. 1Fa 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3. [f a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, it
is an invalid result. Add 6 {0110) to the 4-bit sum in order to skip the six invalid
states and return the code to 8421, If a carry results when 6 is added, simply add
the carry to the next 4-bit group.

Example 2-33 illustrates BCD additions in which the sum in each 4-bit column is equal o
or Jess than 9, and the 4-bit sums are therefore valid BCD bers. Example 2-36 illustrates
the procedure in the case of invalid sums (greater than 9 or a carry).

Add the following BCD numbers:
(=) 0011 + 0100 (b) 00100011 + 00010101
{c) 10000110 + DODI00TL (d) 010001010000 + 010000010111

The decimal number additions are shown for comparison.
@) ool 3 by 0010 0011 3
0100 _+4 0001 0101 £15
0111 7 0011 1000 38
(e) 1000 0110 8 (d) 0100 0101 0000 450
+0001 0011 13 +0100 0001 _0LL #4107
1001 1001 9 1000 0110 o111 867

Note that in each case the sum in any 4-bit column does not exceed 9, and the results are
valid BCD numbers.

Add the BCD numbers: 100100000100001 1 + 0000100100100101.

MNUMBER SYSTEMS, OPERATIONS, AND CODES

' EXAMPLE 2-36
Add the following BCD numbers:

(a) 1001 + 0100 (b) 1001 + 1001
(e} 00010110 + 00010101 (d) 01100111 + 01010011
Solution The decimal number additions are shown for comparison.
(a) 1001 9
+4
Invalid BCD number (=9} 13

+
1ol

+ 0110 Add &

oot ooi1 Valid BCD number

1 1

1 k]
(b) 1001 9
4 1001 +9

1 0010 Invalid because of carry 18
+ 0110 Add 6
0001 1000 Valid BCD number

4 1
L8 .
(e 0001 01o 16
+0001___ 0101 ENA
o010 1011 Right group is invalid (>9), 3l
left group is valid,
+ o Add 6 10 invalid code. Add
. carry, 0001, to next group.
0011 0001 Valid BCD number
l L
3 I
(d) LN a1 67
0101 o011 +53
won 1010 Both groups are invalid (=9} 120
—t Q0+ 0110 Add 6 o both groups
o001 0010 0000 Valid BCD number
1 { L
1 2 0

Supplementary Problern Add the BCD numbers: 01001000 + 00110100

; l::‘;::?," 2-10 1. What is the binary weight of each 1 in the following BCD numbers?

(a) 0010 (b} 1000 (<} o001 (d) 0100
i 2. Convert the following decimal numbers to BCD:
(a) 6 (b)15s - (<) 273 (d) 849

3, What decimal numbers are represented by each BCD code?
! (a) to001001 (L) 001001111000 (<) oooro1010111
4. In BCD addition, when is a 4-bit sum imalid?

53

54 ® DIGITAL FUNDAMENTALS

The single bit change
characterisitic of the Gray
code minimizes the chance
for error,

211 | DIGITAL CODES

There are many specialized codes used in digital systems. You have just learned about the
BCD code; now let us look at a few others, Some codes are strictly numeric, like BCD, and
others are alphanumeric; that is, they are used to represent numbers, letters, symbols, and
instructions, The codes introduced in this section are the Gray code and the ASCII code,
Also, the detection of ermors in codes using a parity bit is covered. Information on codes that
use other methods of error detection and an error comecting code are in Appendix B.

After completing this section, you should be able to

= Explain the advantage of the Gray code = Convert between Gray code and binary
® Use the ASCIT code w [dentify errors in codes bused on the parity method

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific
weights assigned to the bit positions. The important feature of the Gray code is that ir exhibits
only a single bit change from one code word to the next in sequence. This property is
important in many applications, such as shaft pmlitm encoders, uhem error susceplibility

increases with the number of bit changes b k q
Table 2-6 is a listing of the 4-bit Gray code for decimal rmrnbe:s 0 through 15. Binary
numbers are shown in the table for Like binary 1 the Gray code can have

any number of bits, Notice the single-bit change between successive Gray code words. For
instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to 0110,
while the binary code changes from 0011 to 0100, a change of three bits. The only bit change
is in the third bit from the right in the Gray code: the others remain the same.

¥ TABLE 2-6
Four-bit Gray code

DECIMAL BINARY GRAY CODE | DECIMAL BINARY GRAY CODE

(11881 0100 15 1l 100401

Binary-to-Gray Code Cenversion Conversion between binary code and Gray code is some-
times useful. The fellowing rules explain how to convert from a binary number (o a Gray code
word:

1. The most significant bit (left-most) in the Gray code is the same as the comesponding
MSB in the binary number.

2. Going from left to right, add each adjacent pair of binary code bits to get the next Gray
code bit. Discard caries.

NUMBER SYSTEMS, OPERATIONS, AND CODES

For example, the conversion of the binary number 10110 10 Gray code is as follows:
I—+=0—-+=1-+—=1-+ =0 Binary
. :h { 1 1
] 1 1 0 1 Gray

The Gray code is 11101,

Gray-to-Binary Conversion To convert from Gray code to binary, use a similar method;
however, there are some dilferences. The following rules apply:

1. The most significant bit (left-most) in the binary code is the same as the corresponding

bit in the Gray code.
2. Add each binary cosde bit generated 1o the Gray code bit in the next adjacent position.
Discard carries.
For example, the conversion of the Gray code word 11011 1o binary is as follows:
1 |] 1 1 Gray
A J - v

L o+7 1 +7 1 |
~ -~

1 0 [i] 1 4] Binary

The binary number is 10010,

|EX.AMFLE 2-37
{a)} Convent the binary number 110001 10 10 Gray code,

{h) Convert the Gray code 10101111 to binary.

Solution (a) Binary to Gray code:

1= +==+ = 0=+ 0=+ 0 ~+ =+ 1— 4= 0
l) i ! i { 4 1
1 0 1 L] o 1 o 1
{h) Gray code to binary:
1 0 1 L0 1 1 1 "
- +7 =L 7
1 1 o 0 i 0 1 o

Sugplementary Problem (a} Convent binary 101101 to Gray code. (h) Convert Gray code 100111 to binary.

Application Example

A simplified diagram of 2 3-bit shaft position encoder mechanism is shown in Figure 2-6.
Basically, there are three concentric conductive rings that are segmented into eight sectors,
The more sectors there are. the more accurately the position can be represented, but we are
using only eight for purposes of illustration. Each sector of each ring is fixed at cither a
high-level or a low-level voliage 1o represent 1s and 0s, A 1 s indicated by a color sector
and a 0 by a white scctor. As the rings rotate with the shaft, they make contact with a
brush arrangement, that is, in a fixed position and 10 which output lines are connected. As
the shaft rotates counterclockwise through 360°, the eight sectors move past the three
brushes producing a 3-bit binary output that indicates the shaft position.

55

56 ®m DIGITAL FUNDAMENTALS

ia) Bapary

& FIGURE 2-6

Comnct brushes in o fixel
position slide along the surface
of the rotating conductive nings

b} Gray code

In Figure 2-6(a), the sectors are arranged in a straight binary pattern, so that the
brushes go from 000 to 001 w 010 o 011, and so on. When the brushes are on color
sectors, they output a 1 and when on white sectors, they output a 0. If one brush is
slightly ahead of the others during the transition from one sector (o the next, an emoneous
output can occur. Consider what happens when the brushes are on the 111 sector and
about to enter the 000 sector. If the MSB brush is slightly ahead, the position would be
incorrectly indicated by a transitional 011 !nstead of a 111 or a IJOIJ In this type of
application, it is vinually impossible o mai precise 2 of all the
brushes; therefore, some error will always occur at many of the transitions between
sectors.

The Gray code is used to eliminate the error problem which is inherent in the binary code.
As shown in Figure 2-6(b), the Gray code assures that only one bit will change between adja-
cent sectors. This means that even though the brushes may not be in precise alignment, there
will never be a transitional error. For example, let’s again consider what happens when the
brushes are on the 111 sector and about to move into the next sector, 101, The only two possi-
ble outputs during the transition are 111 and 101, no matter how the brushes are aligned.
A similar situation occurs at the transitions between each of the other sectors.

Alphanumeric Codes

In order to communicate, you need not only numbers, but also Icﬂ.er: and other symbols. In
the strictest sense, nlphanumeric codes are codes that ref and aiphabetic char-
acters (letters). Most such codes, | also rep other ch such as ymbols and

various instructions necessary for conveying information.

At a minimum, an alphanumeric code must rr.'pttscnt 10 decimal digits and 26 letters of
the alphabet, for a total of 36 items. Th.ts number requires six bits in each code combina-
tion because five bits are insufficient (2* = 32). There are 64 total combinations of six
hits, so there are 28 unused code combinations. Obviously, in many applications, symbols
other than just numbers and letters are necessary to communicate completely. You need
spaces, periods, colons, semicolons, question marks, ctc. You also need instructions to tell
the receiving system what to do with the information. So, with ccades that are six bits long,
you can handle decimal numbers, the alnhabet, and 28 other symbols. This should give

NUMBER SYSTEMS, OPERATIONS, AND CODES

you an idea of the requi for a basic code. The ASCII is the most
common alphanumernic code and is covered next.

AsCll
ASCII is the abbreviation for A i Standard Code for Information Interchange.
Pronounced “askee,” ASCIT is a uni 1 pled alpk ic eode used in most com-
puters and other ¢h ic equip Mmt I kcg'hﬂani\ are standardized with the

ASCII. When you enter a letter, 2 number, or control command, the comresponding ASCH
code goes into the computer.

ASCII has 128 ch and bols rep d by a 7-bit binary code. Actually, ASCII
can be considered an 8-bit code with the MSB always 0. This S bit code is 00 through 7F in
hexadecimal. The first thirty-two ASCII ch are ds that are never

primed or displayed and are used only for control purp(m Enmplcs of the control charac-
ters are “null” “line feed,” “start of text,” and * “escape.” The other characters are graphic sym-
bols that can be printed or displayed and include the letters of the alphabet (lowercase and
uppercase), the ten decimal digits, punctustion signs, and other commonly used symbols.

Tuble 2-7 is a listing of the ASCII code showing the decimal, hexadecimal, and binary rep-
resentations for each character and symbol. The left section of the table lists the names of the
32 control characters (00 through IF hexadecimal). The graphic symbols are listed in the rest
of the table (20 through 7F hexadecimal).

Tha ASCH Control Characters ‘The first thirty-two codes in the ASCII table {Table 2-7) rep-
resent the control characters. These are used to allow devices such as a computer and printer

|EJ(AMPI.E 2-38 o
Determine the binary ASCII codes that are entered from the computer’s keyboard when the

following BASIC prog is typed in. Also, express each code in hexadecimal.

20 PRIKT =&=":; X%
Selution The ASCII code for each symbol is found in Table 2-7.
Symbol Binary Hexadecimal
0110010 32,
0110000 3046

2
i}

Sparce 0100000 20,
P 1010000 50,
R 1010010 52,
1 1001001 49,
N W0 4E,,
T 010100 54,
Space 0100000 20,
- Qoo 22,
A 1000001 41,

= oot 3Dy,
0100010 22y,
H 0111011 3By,
X 1011000 5815
Supplementary Problem Determine the sequence of ASCIH codes required for the folk

express them in hexadecimal:
80 INPUT Y

and

57

58 = DIGITAL FUNDAMENTALS

dL LLRAENNN iT1 P 5 ot £6 T dJE THELE I £9 L3 41 TIeon IE
aL o Ll = 4% [ORRR L th v 13 HTENI P} = Hi Grkon {23
at lotrni (74 1 as oot th [ae 101ELIn (L] = ar 1oeEon 6L
L oornne (4] | 2% ooreo th \ x [> n (R 8
HL 1o [7d| 1 s LLRTIT 16 | HE [: il 110100 Lt
YL owmnn ol 7 ¥ oronnn 6 z Y 113 g ¥i i Ion ks
{1 loar 1Tl A ns noim 6% A (13 LR s (] fl 1onion &l
18 LR iral ¥ 8 0001101] X - ool Lo 9 L} 2l o0 100 L
L RTITY] 61l " L 1tioiot i M LE 1o 5% L (4] L0100 £C
oL ol BIT “ 95 oreion 95 A 9E (T s 9 91 Or10100 firs
(12 1oronin LI n 5 1ainion (] n £E i £ ¥ 1] 1010100 1z
L (OTOTERS ull ' 53 oaleion] L e wolotin s ¥ ¥l 0o 0
L THoniL £l ¥ {x3 Hooton iR 5 {33 TIarm (14 3 £l LA il
Tl GIaI L il ' 5 0100101 e | H i ulaLL i T] D010 81
1L 10001 11 (111 b Is 1000101 18 0 3 10001 10 [1 1 10031000 L1
0 G001 11 il d 0% 000101 (03 a4 3 0000110 i 0 (i1} 00100 91
€9 Lrnon 1 L i 1noon 6L (8] 4T (RANTH] Lr ' EU) TT1T000 5l 15
N arton o1t u iy 011001 R N £ 14 (AT L1 i 0111000 rl 08
a9 1081011 601 w ar 1011001 L W ac 1011010 sk an 10 1000 £l 5]
x Wi fol 1 or 011001 9L 1 a2 oaHoIn {12 ; 20 001 1000 bl 44
a9 (RN Lon L] ar Liaioot 114 H 14 1101010 £r s 0] TToLon 1 1A
Yo alolon Ll | ¥ oalont L I ¥ CHEBI0I0 o . ¥ D000 ol 41
o Toaiot S0l ' or 1001001 £L | o (T {13 { ol 1001000 6 AH
9 aIni ol L ar (001001 [H ST (L] or) 0 0001000] 54
9 1ol £01 i Lk 10001 L 3] L 10 (i3 v i 1110000 L il
w OLI0OTT Wl] 9% 0110001 0L 4 W oL 13 ¥ 20 oL 9 NIV
i) 1otoain 1) sF To1ooan 69 q 144 1oioni LE * w0 10000 5 0N
L] i ol " " 010001 9 (5} T DOoTOn10 9E 5 L] 0010000 ¥ L0
w Hiooo1 o6 e {35 110001 L9 2 14 (LG 43 (] il 1 1000 £ X3
) 010001 | L0 q Tr OT0000] 99 i i 0100010 ¥E ¥ o DI0000 T X18
19 1000011 Lh b2 It 1000001 9 ¥ 12 1000010 i3 i 1] HOO0000 1 HOS
(1 0001 | L g o U001 9 a 0 000010 Ik souds o0 0000000 0 NN

AdVYNIG TOHWAS XiH A¥YNIE 23a TOIWAS _ X3IH AdvNIG 230 TOEWAS AdVYNIS 23a AWYN

m._nwau:_*m JIHdVHED SHALIDVHEYHD 104LNOD

L=7 318VL 4

NUMBER 5YSTEMS, OPERATIONS, AND CODES = 5%

to communicate with each other when passing information and data, Table 2-8 lists the
control characters and the control key function that allows them to be entered directly from an
ASCII keyboard by pressing the control key (CTRL) and the comresponding symbol, A brief
description of each control character is also given.

Extended ASCIl Characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that
were adopted by IBM for use in their PCs (personal computers). Because of the popularity of

the PC, these fed ASCII ch are also used in applications other than
PCs and have become ially an ficial fard
The Jed ASCII ch are ref d by an 8-bit code series from hexadecimal
80 to hexadecimal FF.
» TABLE 2-8
NAME DECIMAL KEY DESCRIPTION

NUL 0 00 CTRL @ null character
SOH 1 (1] CTRL A start of header
5TX 2 0n CTRLEB stant of text
ETX 3 03 CTRLC end of text
EOT 4 L) CTRL D end of transmission
ENQ 5 05 CTRLE enquire
ACK (] 06 CTRL F acknowbedge
BEL i} o7 CTRLG bell
BS L] o8 CTRLH backspace
HT 9 [CTRL1 harizontal tab
LF 10 0A CTRLJ line feed
VT 11 0B CTRLEK vertical tab
FF 12 oc CTRLL form feed inew page)
CR 13 114} CTRLM camiage retum
S0 14 DE CTRL N shift out
s 15 OF CTRL O shift in
DLE i6 10 CTRLP data link escape
Del 17 1 CTRLQ device conirol 1
DCz2 18 12 CTRLR device control 2
DC3 192 13 CTRL S device control 3
DC4 20 14 CTRLT device control 4
NAK 21 15 CTRL U negative achnowledge
SYN 22 16 CTRLV synchronize
ETB 23 17 CTRL W end of transmission block
CAN b 15 CTRL X cancel
EM 25 19 CTRLY end of medinm
SUB 26 1A CTRLZ substiluie
ESC 27, 1B CTRL | cacape
FS 23 c CTRL / file separator
G5 29 n CTRL | Froup separator
RS an 1E CTRL " tecond separator

us 31 IF CTRL _ unit separtor

60 = DIGITAL FUNDAMENTALS

2. Foreign curmrency symbols
3. Greek letters
4. Mathematical symbols
5. Drawing characters
6. Bar graphing characters
v 7. Shading characters
Table 2-9 is a list of the extended ASCII character set with the decimal and hexadecimal

representations.
¥ TABLE 2-9 =

Urheberrechtlich geschiitzies Material

NUMBER 5YSTEMS, OPERATIONS, AND CODES = 61

1. Cenvert the following binary numbers to the Gray code:

SECTION 2-11
REVIEW

i

(a) 1100 {b) 1010 (c) 11010 |
2. Convert the following Gray codes to binary: |
(a) 1000 (b) 1010 (c) 11101 |

3. What i the ASCII representation for each of the following characters? Express each asa |
bit pattern and in hexadecimal notation. |

(3) kK (b)r (c)s (d) +

25320 ERROR DETECTION AND CORRECTION CODES

When digital signals (groups of 05 and 15) are transmitted from one circuit or system to
another circuit or system, ermor may occur during trensmission. The change of a 1 w0 ora 0
to | during transmission is known as error. It is necessary to detect and correct the emor to
obtain a comect message.

A number of codes exist for detection and correction of error in digital transmission. The
concept of parity of a group of bits or digital word is the key for error detection and correc-
tion.

After completing this section you should be able 1o

= Understand concept of parity = Apply parity method of erro detection = Make use of
various error detection codes ® Use Hamming code

Parity Method for Error Detection

Many systems use a parity bit as a means for bit error detection. Any group of bits contain
cither an even or an odd number of 1s. A parity bit is attached (o a group of bits to make the
total number of Is in a group always even or always odd. An even parity bit makes the total
number of 1s even, and an odd parity bit makes the total odd,

A given system operates with even or odd parity, but not both. For instance, if a system
operates with even parity, a check is made on each group of bits received to make sure the
total number of 1s in that group is even. I there is an odd number of 15, an error has occurred,

As an illustration of how parity bits are attached to a code, Table 2-10 lists the parity bits
for each BCD number for both even and odd parity. The parity bit for each BCD number is in

the P column.

» TABLE 2-10
EVEN PARITY | oDD PARITY
P BCD | r BCD
0 0000 1 0000
1 0001 0 wol
1 (LI (1] (LU (VR
0 0011 1 0011
1 0100 0 o0 |
0 o101 1 T
0 0110 1 0110 ‘
1 ol 0 o
1 1000 0 1000
(i 1001 1 1001

g
g

62

= DIGITAL FUNDAMENTALS

|EXAMPLE 2-39

Solution

Supplementary Problam

' EXAMPLE Z-40

Solution

Supplementary Problam

The parity bit can be attached to the code at cither the beginning or the end, depending on
system design. Notice that the total number of 15, including the parity bit, is always even for
even parity and always odd for odd parity.

Detecting an Error A parity bit provides for the detection of a single-bit error (or any odd
number of errors, which is very unlikely) but cannot check for two errors in one group. For
instance, let us assume that we wish 1o transmit the BCD code 0101, (Parity can be used with
any number of bits; we are using four for illustration.) The total code transmitted, including
the even parity bit, is
————Even parity bit
00101
T BCD code
Now, let us assume that an error occurs in the third bit from the left (the | becomes a 0) as
follows:
——— Even parity bit
00001
T Bitermror
‘When this code is received, the parity check circuitry determines that there is only a single |
(0dd number), when there should be an even number of 1s. Because an even number of 1s
does not appear in the code when it is received, an error is indicated,

An odd parity bit also provides in a similar manner for the detection of a single error in a

given group of bits,

Assign the proper even parily bit to the following code groups:
(a) 1010 (b} 111000 (c) 101101
(d)} 1000111001001 (e) 101101010111

Make the parity bit either 1 or 0 as necessary to make the total number of 1s even. The
parity bit will be the left-most bit (color).

(a) 01010 (b} 1111000 (e} 0101101
{d)} 0100011100101 (e) LI01101001111

Add an even parity bit to the 7-bit ASCII code for the letter K.

An odd parity system receives the following code groups: 10110, 11010, 110011,
110101110100, and 1100010101010, Determine which groups, if any, are in error.

Since odd parity is required, any group with an even number of 1s is incorrect. The
following groups are in error: 110011 and 1100010101010,

The following ASCH character is received by an odd parity system: 00110111, Is it
comect?

NUMBER SYSTEMS, OPERATIONS, AND CODES =

Error-Detection Codes

The 2 -5 code is imes used in ications work. It utilizes five bits to repre-
sent the ten decimal digits, so it is a form of BCD code. Each code word has exactly two s, a
convention that facilitates decoding and provides for better error detection than the single-
parity-bit method. If more or less than two 1s appear, an error is indicated.

The 63210 BCD code is also characterized by having exactly two 1s in each of the 5-bit
groups. Like the 2-out-of-5 code, it provides reliable error detection and is used in some appli-
cations.

The biguinary (two-five) code is used in certain counters and is composed of a 2-bit group
and a 5-bit group, each with a single 1. Its weights are 50 43210. The 2-bit group, having
weights of five and zero, indicates whether the number represented is less than, equal to, or
greater than 5. The 5-bit group indicates the count above or below 5,

The ring counter code has ten bits, one for each decimal digit, and a single 1 makes error
detection possible. It is easy to decode but wastes bits and requires more circuitry to imple-
ment than the 4-bit or 5-bit codes, The name is derived from the fact that the code is generated
by a certain type of shift register, a ring counter, Its weights are 9876543210,

Each of these codes is listed in Table 2-11. You should realize that this is not an exhaustive
coverage of all codes but simply an introduction to some of them.

» TABLE 2-11

DECIMAL 2-0UT-OF-5 63210 5043210
0 noot L 00110 01 00001
I (LT 00011 01 00010
2 0010 ool 01 00100
3 01 01001 01 01000
4 01010 01010 01 10000
5 01100 01100 10 00001
L] 10001 10001 10 00010
T 10010 10010 1000100
8 10100 10100 10 01000
) 11000 11000 10 10000

Hamming Error-Correction Code

This section discusses a method, generally known as the Hamming code, that not only pro-
vides for the detection of a bit error but also identifies the bit that is in error so that it can be
comected. The code uses a number of parity bits (dependent on the number of information
bits), located at certain positions in the code group.

The Hamming code construction that follows is for single-error comrection.

9876543210

OOO0000001
DOGD0G001 0
OO0 00
OOO00 1000
D000 0000
OO0] 0000
OO TO00000
OO 000000
01 DOO00000
HORMOOOGD00

63

&4 = DIGITAL FUNDAMENTALS

~ Equation2=1

Number of Parity Bits

If the number of information bits is designated m, then the number of parity bits, p, is deter-
mined by the following relationship:

Pa=m+p+l

For example, if we have four information bits, then p is found by trial and emror with Equation
2-1. Letp = 2, Then,

¥ =24
and,
mtp+ri=d+2+1=7

Since 27 must be equal to or greater than m + p + 1, the relationship in Equation 2-1 is nor
satisfied. We have to try again. Let p = 3, Then,

¥=2'=g
and,
mtp+l=4+3+1=8

This value of p satisfies the relationship of Equation 2-1, so three parity bits are required to
provide singl ion for four i ion bits. It should be noted here that error
detection and correction are provided for alf bits, both parity and information, in a code
Eroup.

Placement of the Parity Bits in the Code
Now that we have found the number of parity bits required in our parti le, we must

arrange the bits properly in the code. At this point you should realize that in this n'cxample. the
code is composed of the four information bits and the three parity bits, The left-most bit is

designated bir 1, the next bit is bit 2, and so on as follows:
bitl, bit2, bit3 bitd, bit3 bite, bit7

The parity bits are located in the positions that are numbered ding to ding pow-
ers of two {1, 2, 4, 8, ...}, as indicated:

P Po My, Py My My M

The symbol £, designates a particular parity bit, and M, desigr a particular infe
bit.

Assignment of Parity Bit Values

Finally, we must properly assign a 1 or 0 value to each parity bit. Since each parity bit pro-
vides a check on cenain other bits in the total code, we must know the valoe of these others in
order to assign the parity bit value, To find the bit values, first number cach bit position in
binary. that is, write the binary number for each decimal position number (as shown in the
second two rows of Table 2-12). Next, indicate the parity and information bit locations, as
shown in the first row of Table 2-12. Notice that the binary position number of parity bit P,
has a | for its night-most digit. This pariry bit checks all bit positions, including itself, that
have 1s in the same location in the binary position numbers. Therefore, parity bit Py checks
bit positions 1, 3,5, and 7.

The binary position number for parity bit 5 has a 1 for its middle bit. It checks all bit posi-
tions, including itself, that have s in this same position. Therefore, parity bit P, checks bit
positions 2, 3,6, and 7.

NUMBER S5YSTEMS, OPERATIONS, AND CODES ® 45

VTABLE 2-12

BIT DESIGNATION £
BIT POSITION | 1 2
BINARY POSITION NUMBER | 001

P e SV)
100 | 101 | 110 |

bits (M}
Parity bits (P,) | | | | | | |
[N TR L 4+ TEIY s R =

The binary position number for panity bit Py has a | for its left-most bit. It checks all bit
positions, including itself, that have 1s in this same position. Therefore, parity bit P5 checks
bit positions 4, 5, 6, and 7.

In each case, the parity bit is assigned a value to make the quantity of 1s in the set of bits
that it checks odd or even, depending on which is specified. The following examples should
make this procedure clear.

[T o s Bl
Determine the singl ing code for the BCD number 1001 (information bits), |

using even parity.

FPuP=g
m+p+l=4+3+1=38

Solution - Step 1. Find the number of parity bits required. Let p = 3. Then, i

‘Three parity bits are sufficient.
Total code bits =4 +3 =T
Step 2. Construct a bit position table, and enter the information bits. Parity bits are deter-
mined in the following stéps. |
Supa. Determine the parity bits as follows:
Bit P, checks bit positions 1, 3.S‘nnd7mdmwbeaﬂfnrﬂnrembemmn
number of 1s (2) in this group. |
Bit P; checks bit positions 2, 3, &and?andmustbeaufwﬂmwbeanm
number of 1s (2) in this group.
Bit Py checks bit positions 4, 5, 6, and 7 and must be a 1 for there to be an even
number of 1s (2) in this group.
Step 4. These parity bits are entered in the table, and the resulting combined code is 0011001,
Table 2-13 shows the complete tahle.

BIT DESIGNATION SO IR B e e T My |
BIT POSITION G bk P A1 3% 4 5 16
BINARY POSITION NUMBER | 001 | 010 | 011 | 100 101 : 10
| Parity bits o o =y | |
[et s S T X G ST =
1 ATABLE 2-13
!
| Suppl Problem D i ingl ing code for the BCD number 0110 using even parity. |

| Eims o At e i

66 ® DIGITAL FUNDAMENTALS

| EXAMPLE 2
Determine the single-eror-comecting code for the information code 10110 for odd parity.

Solution Step 1. Determine the number of parity bits reguired. In this case the number of informa-
tion bits, m, is five. From the previous example, we know that p = 3 will not
work. Try p = 42
r=2=16
mEp+1=5+4+1=10
Four parity bits are sufficient.
Total code bits = 5 +4 = 9,

Step 2. Construct a bit position table, and enter the information bits. Parity bits are deter-
mined in the following steps.

Step 3. Determine the panity bits as follows:
Bit Py checks bit positions 1, 3, 5, 7, and 9 and must be a 1 for there to be an odd
number of 15 (3) in this group.
Bit P, checks bit positions 2, 3, 6, and 7 and must be a 0 for there to be an odd
number of 15 (3) in this group,
Bit P; checks bit positions 4. 5, 6, and 7 and must be a 1 for there to be an odd
number of 15 (3) in this group.
Bit P; checks bit positions 8 and 9 and must be a 1 for there to be an odd number
of Is (1) in this group.

Step 4. These parity bits are entered in the table, and the resulting combined code is
101101110,

Table 2-14 shows the complete table.

Py My .
L} 9
1000 | 1001

BIT DESIGNATION |
BIT POSITION |
BINARY POSITION NUMBER | 0001

-=

M,
g B 4
| o011 |

hits 3 |
Parity bits |

~TABLE 2-14

Supplementary Problem Determine single-error-correcting code for the information code 11010 for odd parity,

Detecting and Correcting an Error

Now that a method for constructing an error-correcting code has been covered, how do we use
it 1o locate and cormect an error? Each parity bit, along with its corresponding group of bits,
must be checked for the proper parity. If there are three parity bits in a code word, then three
parity checks are made. If there are four parity bits, four checks must be made, and so on.
Each parity check will yield a good or a bad result. The total result of all the parity checks
indicates the bit, if any, that is in error, as follows:

Step 1. Start with the group checked by £y,

NUMBER 5YSTEMS, OPERATIONS, AND CODES = &7

Step 2. Check the group for proper parity. A 0 represents a good parity check, and |
represents a bad check.

Step 3. Repeat step 2 for each parity group.

Stepd. The binary number formed by the results of all the parity checks designates the
position of the code bit that is in error, This is the error position code, The first
parity check generates the least significant bit (LSB). If all checks are good, there
is no error.

[[exampLE 2-43 R S o
= Assume that the code word in Example 2-41 (0011001) is transmitted and that 0010001 is

received. The receiver does not “know™ what was transmitted and must look for proper
parities to determine if the code is correct. Designate any error that has occurmred in trans-
mission if even parity is used.

Solution First, make a bit position table:

»TABLE 2-15
BIT DESIGNATION Po|oM, Py M, -"_|\|f
7

BINARY POSITION NUMBER | 001 | 010 | 011 | 100 | 101 | 110 | 111
Received code | (1] o 1 0 0 o I

[
BIT POSITION | ! H 3 4 5 6

First parity check:

Bit P, checks positions 1, 3, 5, and 7.

There are two 1s in this group,

Parity check is good. + 0 (LSB)
Second parity check:

Bit P, checks positions 2, 3, 6, and 7.

There are two 15 in this group.

Parity check is good. - 0
Third parity check:

Bit Py checks positions 4, 5, 6, and 7.

There is one 1 in this group.

Parity check is bad. +1 (MSB)
Resulr: |

The error position code is 100 (binary four). This says that the bit in position 4 is in

error. It is a 0 and should be a 1. The corrected code is 0011001, which agrees with the

transmitted code. |

Supplementary Problem If the Hamming code seq 1100 110is itted and due to error in one bit

position, is received as 1110110, locate the position of error, assuming even parity.

48 ®m DIGITAL FUNDAMENTALS

I EXAMPLE 2-44
The code 101101010 is received. Correct any errors. There are four parity bits, and odd

parity is used.
Solution First, make a bit position table:

BIT DESIGNATION f ’ M | P M
BIT POSITION 2 3| 4 5

BINARY POSITION NUMBER | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 1000

Received code 1 0 1 1 o |] 1
[t e = P G N T R —
ATABLE 2-14

First parity check:
Bit P, checks positions 1, 3,5, 7, and 9,
There are two 1s in this group.

Parity check is bad.

Second parity check:
Bit P, checks positions 2, 3, 6, and 7.
There are two s in this group.

Parity check is bad.

1(LSB)

Third parity check:
Bit P; checks positions 4, 5, 6, and 7.
There are two 15 in this group.

Parity check is bad.

Fourth pariry check:
Bit P, checks positions 8 and 9.
There is one | in this group.

Parity check is good.
Result:

0(MSB)

The error position code is 0111 (binary seven). This says that the bit in position 7 is in

error. The corrected code is therefore 101101110,

parity transmission.

I SECTION 2-12)
REVIEW 1. Add an even parity bit to the following ASCII codes:

{a) 1001011 (b) 1110010 (c) 0100100 (d) O101011
2. Determine parity of
(a) 01110010 (b} 10011101

Supplementary Problem Correct any errors in the code 111101001 received with four parity bits, assuming odd

3. What s the number of parity bits required for the jon of Hamming code for

the following number of information bits?
(a4 (B)5 (7 (d)s8

NUMBER SYSTEMS, OPERATIONS, AND CODES = 49

A binary nomber is a weighted number in which the weight of each whole number digit is a
positive power of two and the weight of each fractional digit is a negative power of two. The
whole number weights increase from right 1o left—Ffrom least significant digit to most signif-
icant.

A binary number can be comverted to a decimal number by summing the decimal values of the
weights of all the Is in the binary number,

A decimal whole number can be converted to binary by using the sum-of-weights or the
repeated division-by-2 method.

A decimal fraction can be converted to binary by using the sum-of-weights or the repeated
multiplication-by-2 method.

The basic rules for binary addition are as follows:

0+0=0
0+1=1
1+0=1
1+1=10

The basic rules for binary subtraction are as follows:

® The 1's complement of a binary number is derived by changing 15 to 0s and 0s to 15,
® The 2's complement of a binary number can be derived by adding 1 to the 1's complement.

Binary subtraction can be accomplished with addition by using the 1's or 2's complement
method.

B A positive binary number is represented by a 0 sign bit.

A negative binary number is represented by a 1 sign bit.

For arithmetic operations, negative binary numbers are represented in 1's complement or 2's
complement form.

In an addition operation, an overflow is possible when both numbers are positive or when
both numbers are negative. An incomect sign bit in the sum indicates the occurrence of an
overflow.

The hexadecimal number system consists of 16 digits and characters, 0 through 9 followed by A
through F,

One hexadecimal digit represents a 3-bit binary number, and its primary usefulness is in simpli-
fying bit patterns and making them easier 1o read.

A decimal number can be converted to hexadecimal by the repeated division-by-16 method.

The octal number system consists of eight digits, 0 through 7.

A decimal number can be converted to octal by using the repeated division-by-8 method.
Octal-to-binary ' i by simply replacing each octal digit with its 3-bit
binary equivalent. mmumfahm to-octal coaversion.

A decimal number is converted to BCD by replacing each decimal digit with the appropriate
4-bit binary code.

The ASCII is a 7-bit alphanumeric code that is widely used in compuier systems for input and
output of information.

Parity bit is added to a group of bits to make number of Is odd (odd perity) or even (even
parity).

Hamming code is used for detection and correction of emor in digital transmission,

70 = DIGITAL FUNDAMENTALS

T o

1 2% 10 + 8 x 10%s equal o
{a) 10 (b} 280 (c) 28 (d) 28
2. The binary number 1101 is equal to the decimal number
(a) 13 by 49 {e) 11 {d) 3
3. The binary number 11011101 is equal to the decimal number
fa) 121 by 221 () 441 (d) 256
4. The decimal number 17 is equal to the binary number
() 10010 (b) 11000 (e} 10001 (d)y 01001
£, The decimal number 175 is equal 10 the binary number
fa) 11001111 {b) 101G () wioin () 1Hionang
6. The sum of 11040 + 01111 equals
{a) 101001 (b} 101010 {e) 110101 (d) 101000
7. The difference of 110 = 010 equals
fa) 001 ib) 010 (e} 101 (d) 100
8. The 1's complement of 10111001 is
(a) 01000111 (b) 01000110 {c) 11000110 (d} 10101010
9. The 2's complement of 11001000 is
{a) OLIOTIL (b) OOI1D001 () DIOOLO00 (d) 00111000
10, The decimal number 4122 is expressed in the 2 complement form as
(a) 01111010 (b} 1111010 (e} O1000ID1 (d) 10000101
11. The decinal number =34 is expressed in the 2's complement form s
{ay 01011010 (b} 10100010 (e} 11011010 {d) oloteiol
12. A single-precision floating-point binary number has a 1oaal of
{a) 8 bits (b} 16 bits fc) 24 bits (d) 32 bits
13. In the 2's complement form, the binary number 10010011 is equal to the decimal number
(@) =19 ib) +109 (o) +91 {d) —19
14. The binary number 10110011 1001010100001 can be writlen in octal as
@) 54712304 (b) 5471241, e} 2634521y) 23162501,
15, The binary number 10001 101010001 101111 can be written in hexadecimal as
(a) AD46T,, (b) SC46F,, (c) BDMEF,, (d) AEAGH,
16, The binary number for FTAY9,, is
e} TITI0011IM0100T (b} 1110101 110101001
(e} 1101010711000 (d) 1111011010101001
17, The BCD number for decimal 473 is
{a) 111011010 (b) 110001110011 (4] 10001110011 {d) D10ODLNTI00NT
18. Refer to Table 2-7. The word STOP in ASCIN is
{a) 1010011101010010011 111010000 (b} 10100101001 1001001 1101010000
(e} 10010100 1011011001 O] (d} 1010 0IIonI001 101100100
19, The number of parity bits to be added to an 8-bit word for ing ing code for d

and correction of single ermor is
ia) 1 w2 (@3 (d4
20. A 7-bit Hamming code (even parity) 0001001 for a BCD digit is known to have single emror the
encoded BCD digit is
@) 9)5 (@3 (o

NUMBER 5YSTEMS, OPERATIONS, AND CODES = 71

Answers to odd-numbered problems are at the end of the book.

SECTION 2-1 Dedmal Numbers

What is the weight of the digit 6 i each of the following decimul numbers?
(@) 1386 (b) 54,692 (e} 671920

Express each of the following decimal numbers as a power of ten:

fa) 10 (b) 100 (<) 10,000 {d) 1,000,000

Give the value of each digit in the following decimal numbers:

@) 471 (b} 9356 (c) 125000

How high can you count with four decimal digits?

=

ol

]

t ol

SECTION 2-2 Binary Numbers

5. Conven the following binary numbers w decimal:
(m) 11 by 100 e} 11 id) 1000
{e) 1001 F) 110 gy 1001 thy 1101

6. Convent the {ollowing binary numbers to decimal:
(@) 1110 by 1010 {e) THI00 () 10000
(e) 10101 (f) 11101 {g) 10111 (h) 11111

7. Conven each binary number 1o decimal:
{a) 1100101 by 10101001 ich 1000001111
(d) 1111000.101 1€} 1011100.10101 1) 1110001.0001
(g) 10110101010 {hy 1111 111

B, What is the highest decimal number that can be represented by each of the following numbers of
binary digits (bits)?
{m) two ib) three teh four (d) five (e) six
N seven {g) eight (h) nime (i) ten () eleven

9. How many bits are required w the following decimal bers?
{m) 17 (b) 35 ie) 49) 68
(e} K1 iry 114 (g) 132 {h) 25

10. Generate the binary sequence for each decimal sequence:
{a) Othrough 7 ib) 8 through 15 (e} 16 through 31
(d) 32 through 63 (e) 64 through 75

SECTION 2-3 Decimal-to-Binary C i

11. Convert each decimal number 1o binary by using the sum-of-weights method:
(a} 10 by 17 {c) 24 (d) 48
(e 61 () 93 () 125 {h) 186

12, Convert each decimal fraction 1o binary using the sum-of-weights method:
() 032 (b) 0.246 (c) 0.09EI

13. Convent cach decimal number to binary wsing repeated division by 2:
in) 15 (b 21 (e) 28) 34
e} 40 if) 59 @ 65 {hy 73

14. Coavert cach decimal fraction to binary using repeated multiplication by 2:
{a) D9E (b} 0.347 {c) 05028

72w DIGITAL FUNDAMENTALS

SECTION 2-4 Binary Arithmetic
15, Add the binary nurnbers:

(a) 11 +01 {b) 10 + 10 g} 101 + 11

) 11+ 10 (e} 1001 + 101 Af) 1101 + 1001
16. Use direct subtraction on the following binary numb

(@) 11-1 (b} 101 - 100 {e) 110 =101

{d) 10 - 11 {e) 1100 ~ 1001 (f)y 11010 - 10111
17. Perform the following binary multiplications:

) 1% 1 (b 100 % 10 (e} 111 % 101

{d} 1001 % 110 (e) 1101 = 1101) 10 = 110t
18. Divide the binary numbers as indicated:
(@) 100 = 10 (b) 1001 + 11 (g} 1100 + 100

SECTION 2-5 15 and 2's Compl of Binary Numi
19, Determine the 1's complement of each binary number:
(s} 11 (b) 110 (e} 1010

(d) 11010111 te) 1110101 {f}y 0O001

20, Determine the 2's complement of each binary number using either method:
{w) 10 () 111 () 1001 (d) 1101
(&) 11100 () 10011 (g) 10110000 (h) OOL11101

SECTION 2-4 Signed Numbers

21, Express each decimal number in binary as an 8-bit sign-magnitede number:
(m) +2% (b)) =85 (c) 4100 (d) —123

22. Express each decimal number as an 8-bit number in the 1's complement form:
(a) =34 (b} +57 (e} =99 (d) +115

23. Express each decimal number as an B-bit number in the 2's complement form:
() +12 (b} —68 (e} +101 (d) =125

24. Determine the decimal value of each signed binary number in the sign-magnituds form:
(=) 10011001 {b) 01110100 (e) 10EI1111

28, Determine the decimal value of each signed binary number in the 1's complement form:
(a) 10011001 (b) OI110100 (c) 10TFI1LN

26. Determine the decimal value of cach signed binary number in the 2's complement form:
(a) 10011001 by 01110100 (e) 10111111

27. Express each of the following sign-magnitude binary numbers in single-precision floating-point
format:

(a) OL1T110000101011 (b) 10011000001 1000

28. Determine the values of the following single-precision floating-point numbers:
(a) 1 10000001 010010011 10001000000000
(b) O 11001100 100001 11110100100000000

SECTION 2-7 Arithmetic Operations with Signed Numbers
29, Convert each pair of decimal numbers to binary and add using the 2's complement form:
(#) 33and 15 {b) S6and —27 (c) —46and 25 (d} =110 and -84
30. Perform each addition in the 2's complement form:
() 00010110 + QOLIOG1T (b) 01110000 + 10101111

SECTION 2-8

SECTION 2-9

SECTION 2-10

NUMBER 5YSTEMS, OPERATIONS, AND CODES

31. Perform each addition in the 2's complement form:

() 10001100 + 00111001 (b) 11011001 + 11100111
32 Perform each subtraction in the 2's complement form:

(a) 00110011 — 0000000 (B) D1100101 — 11101000
A3, Multiply 01101010 by 11110001 in the 2's complement form.
34. Divide 01000100 by D01 1001 in the 2°s complement form.

Hexadecimal Numbers
35, Conven each hexadecimal number to binary:
(a) 38, {h) 39 {c) Aldy, (d) 5CKy,

(e) 4100y, (D FBIT, () BAYD,,
36. Convert each binary number to hexadecimal:

im) LLID by 10 e} 10111

(d) 10100110 e} 1111110000 (0 1001 10000010
37. Convent each hexadecimal number to decimal:

) 2, (6) 92, (e) 1A, (d) 8Dy,

&) F3,, (D EBy (g} 5C2; (h) 700,
38. Conven each decimal number 1o hexadecimal:

(a} 8 (LB ey 33 id) 52

(e) 284 (n 2890 {g) 4019 (h) 6500
39. Perform the following additions:

(a) 3+ 29,5 () AD +6B,, (e) FF + BB,
40. Perform the following subtractions:

(@) 51y — 40y (b) CBis = 3Ae fc) FDys = B3y

Octal Numbers
41. Convert each cctal number to decimal:
(a) 124 (b 27, [OF-.% (d) 64y (e} 103
0557 (@ 163 (h) 1024y (D) 7765,
42. Convert each decimal aumber to octal by repeated division by 8;
(a) 15 b) 27 ic) 46 (d) 70
(e} 100 (D 142 (@ 219 (k) 435
43, Convent each octal number o hinary:
fa) 13,) 57y fe) 100,) 3214 (e) 540,
(N 4653, (g) 13271, (W) 45600, (D) 100213,
44. Convert each binary number to octal:
(a) 111 b) 10 e} 101
idy 101010 fe) 1100 n 101
(g) 101100011001 (h) 1015000001E (i) 111111101111000

Binary Coded Decimal (BCD)

45. Conven each of the following decimal numbers 10 8421 BCID:
{a) 10 (b) 13 {e) 18 (dy 21 (e} 25 N 36
@44 (h) 57 ()69)98 (k) 125 () 156

73

74 ®m DIGITAL FUNDAMENTALS

46. Convent each of the decimal numbers in Problem 45 to straight binary, and compare the rumber of
bits required with that required for BCD.
A47. Convert the following decimal numbers to BCD:
(o) 104 {h) 128 fe) 132 (dy 150 {e} 166
)20 (@) 350 (W 34T (D 1051
48, Convert each of the BCD numbers o decimal:
(@) D001 b} 0110 () 1001
{dh D0O11000 e} DOOHIDOL () 00110010
() 01000101 (b} 10011000 (i) 100001110000
49. Convert cach of the BCD numbers to decimal:

ta) 1000N000 (b) 0010001 1011Y
() 001101000110 {d) DID0ON 10000
(e) 011101010100 (£} 100000000000
(g) FOO10L111000 () DODLO11010000011

(i) 10 0OD03001 1000 (§) 011001 1001100111
50, Add the following BCD numbers:
{a) 0010 + 0001 {b) 0101 + 0011
{c) MI1E + D010 (d) 1000 + 0001
() 00011000 + 00010001 (F) 01100100 + 00110011
(g} DI000000 + OO0 11 (b} 10000101 + 00010011
51. Add the following BCD numbers:
(a) 1000 + Q110 (b) 0111 + 0101
() 1001 + 1000 (d) 1001 + 0111
(&) DO100101 + 00100111 () 01010001 + 01011000
(g} 10011000 + 100H 1] (hy QIOI01100001 + 011 HD001000
52, Convent each pair of decimal numbers to BCD, and add as indicated:
(@) 443) 5+2 &) 6+4 d) 17+ 12
(e) 28423 (D65+S8 (g 113+ 101 (h) 295 + 157

SECTION 2-11 Digital Codes
53. In a certain application a 4-bit binary sequence cycles from 1111 to 0000 periodically. There are
Four-bit changes, and because of circuit delays, these changes may not occur ot the same instant, For
example, if the LSB changes first, the number will appear as 1110 during the transition from 1111 to
D000 and may be misinterpreted by the system. Nustrate how the Gray code avoids this problem,

54, Convent each binary number 1o Gray code:
{a) 11011 (b 1001010 {c} 1IT10L1101110
55. Conven each Gray code 1o binary:
(a) 110 (b} 00010 (e} 11000010001
56. Comven each of the following decimal numbers 10 ASCTL. Refer 1o Table 2-7.
@1 M3 6 I (I8
29 (@56 (W75) w7
57. Determine each ASCII character. Refer 1o Table 2-7.
{a) DOT10DO () 1001010 fc) oIInol
(d) 0100011 (e) 0111110 () 1000010
58. Decode the following ASCLI coded message:
1001000 1100101 1101100 1100100 L1015 0111
Q100000 1001000 IOITEL TLIDITE 00000 100001

THI0010 I00I0L C100000 111I00E 1101110 110101
o1

NUMBER SYSTEMS, OPERATIONS, AND CODES ®» 75

59, Write the message in Problem 58 in hexedecimal.
&0, Cervert the following computer program statement 1o ASCIE:

30 INPUT A, B

SECTION 2-12 E Detection and C .

61. Determine which of the following even parity codes are in error:
(a) 10GHI00I0 () O11IOMOLO () 101EETLIO10001010
62, Determine which of the following odd parity codes are in error:
(o) 11010 RO RG] (L HB TG TG T
63, Adtach the proper even parity bit to each of the following byies of data;
fa) 10100100 (b} DOOOIO0] (e) 11101110
64, Anach the proper odd parity bit to cach of the bytes of Problem 63,
65, Ix ine the singlk ing code for the ing BCTY numbers, using ockd parity:
(o) 0000 (b} 0001 {e) 0OI0 iy 1000
66. B421 codes are transmitted s Hunming codes with even parity and the following words are
received:
(a) 0101000 (k) 0011101 {ey L0000 (d) 1101001
Find the words that have single error and determine the correct BCD digit.

SECTION REVIEWS
SECTION Z-1 Decimal Numbers
L {a) 1370 10 b} 6725: 100 ey TO5E: 1000 (d) 58.72:0.1
(@ Sl=3x1+ (=1 (b} 137 = (1 = 100 + (3 % 1) + (7= 1)
(e} 1492 = (1 = 1000) + (4 = 100) + (9% 10) + (2% 1)
(d) 10658 = (1 [00) + (0 = W)+ (6= 1)+ (5 % 00 + (8 < 0013

SECTION 2-2 Binary Numbers

1, 2= 1 =255
2. Weight is 16,
3. 0111101011 = 189,375

SECTION 2-3 Decimal-to-Binary Conversion
L {m) 23 = 10M11 {b) 57 = 111001 (e) 45.5 = 1011011 |
Z {a) 14 =110 (b} 21 = 1010 {c) 0375 = 0011
SECTION 2-4 Binary Arithmetic
1 dm) 1101 + 1000 = 10111 (h) 10111 + D101 = 100100

2.) 1101 = 010 (L] (h) 10411 — 111 = 0010
ENEINIUENTY o by 1100 <+ 011 oo

SECTION 2-5 1's and 2s Compl ts of Binary Numb
1. (@) 1's comp of 00011011 = 11100100 (b} 1scomp of 11110111 = 00001000
{e} L'scomp of 10001101 = 1110010

76 = DIGITAL FUNDAMENTALS

2. (a) 2's comp of 00010110 = 11101010 (b) 2's comp of 11111100 = 00000100
(e} 2's comp of 10010001 = 01101111

SECTION 2-6 Signed Numbers
1. Sign-magnitude: +9 = 00001001
2 Pscomp: =33 = L1110
3. ¥'s comp: —46 = 11010010
4. Exponent and mantissa

SECTION 2-7 Arithmetic Operations with Signed Numbers
1. Cases of addition: positive mumber is larger, negative number is larger, both ane positive, both are
negative
2. 0010000 + 1O1TEI00 = LI0ITI00
3. 01110111 — 00110010 = 01000101
4. Sign of product is positive,
5. 00000108 X 01110 = 1001111011
6. Sign of quolient is negative.
7o DOLION <+ 00001100 = D000 100

SECTION 2-8 Hexadecimal Numbers
L (2) 1001001 = B3y, (b} 110011101000 = CES),
2 (&) 5T = 01010111 (B 3A%5,5= 001110100101

() FEOB s = THI1TI00000001011

3. 9B30,, = 39,728,y
4. 573, = 23Dy,
S (a) 18y, + 34, =40 (b} IFy + 24, =69,
6. 75— 2= 5y (b) My — 5Ci6 = 38,

SECTION 2-9 Octal Numbers
Lo(a) 73, =59, (b} 125, =85,
2. (a) Wy = 142 (b} 163, =243,
3. (a) 46, = 100110 {b) 723 = 111010011 (€} 5624, = 101110010100
4. (@) 110101111 =657, (b) 100THO0OI0 = 1142, ()} 10111111001 = 2771,

10 Binary Coded Decimal (BCD)
L (a) 0010:2 (b) 1000: & {ey 0OO1: 1 id) 010k 4
2. (m) 6y, = 0110 {hy 15,0 = D0010] i) 273, = 0010010011
(db 849y, = 100001001001
3. (a) 10001001 = 89y, (b) DOTO01 111000 = 274, () DOOL0TG1OI1L = 157,

4. A 4-bit sum is invalid when it is greater than 9.

SECTION 2-11

SECTION 2-12

NUMBER SYSTEMS, OPERATIONS, AND CODES = 77

Digital Codes
L (a) 1100, = 1000 Gray (b} 1010, = 1111 Gray (c) 11010, = 10111 Gray
2 (a) 1000Gray = 1111, (b} 1010 Gray = 1100, () 11101 Gray = 10110,
A (a) K:1O0I01T — 48, (b = 000 =72,

te) 5: 0100100 = 24, (d) +: 0101011 — 2B,

Error-D« ion and C. ion Codes
L. (a) 01001011 (b) 01110010 () 00100100 (d) G0101011
Z (a) Even {b) odd
Am 3 b 4) 4) 4

SUPPLEMENTARY PROELEMS FOR EXAMPLES

2-1 9 has a valee of 900, 3 has a value of 30, 9 has a value of 9.

2-2 6 has a value of 60, 7 has a value of 7, 9 has a value of %10 (0.9), 2 has a value of 2100 (0.02),
4 has a value of 4/ 1000 (0.004).

2-3 10010001 = 128 + 16 + 1 = 145 2-4 10,111 = 2 + 05 + 0.25 + 0.125 = 2875
-5 125=64 432+ 16+8+ 4+ 1=111101 1-6 39 = 100111

227 11+ 1100 =111 28 111 — =011 229 110 — 101 = 00

2-10 1100 = 1010 = 10000010 2-11 1100 + 100 = 11 2-12 00110101

2-13 01000000 2-14 SeeTable 2-17. 2=15 01110111 = 119,

= TABLE 2-17

. SIGN-MAGNITUDE 1°5 COMP "2's comp:
+19 0001001 1 00010011 0001008

=19 10010011 11101100

11101101

2-16 11101011 = =20y, 2-17 LIDIOTHD = —41y
2-18 1 100G 1000101001 100000000 2-19 01010101 2-20 00010001
2-21 1001000110 2-22 (B3N -58) = —4897 (1110011011111 in 25 comp)
2-23 100+ 25 =4(0100) 2-24 4F79C,, 2-25 01L010111101001 1,
2-26 6BD;, = 011010111101 =2" + 2* + 27+ 2 + 2 + 2' 2 27 4 2
=024+ 5124 128+ 324 16+ 844+ 1=1725,

2-27 60A,, = (6 % 256) + (0 16) + (10 % 1) = 1546,y
21-28 2391y = AlFs 2-29 4C; + 34, = By, 2-3 BCDy, — 173, = ASA
2-31 (a) 001011, = g = 134 (b) 010101, = 214 = 255

(c) DOLL00000; = 96,5 = 140, (d) 111101010110, = 3926,, = 7526,
2-32 1250762, 2-33 [00I011001110011 2-34 82276,
235 1001100101101000 2-36 10000010 2-37 (a) 11101 (Gray) (b) 111010,
2-38 The sequence of codes for 80 INEUT ¥ is 38,30,,20,:49 E 1.50,.55 454,620,594
2-39 01001011 240 Yes 241 1100110 242 011110110 243 3
2=44 111001000

SELF-TEST

L) L (w 3 (b 4. () 5. (k) 6. (a) 7. idy 8. (b)
%o(d) 10, @) 1L {c) 12 (d) 3oy Mob)y 15 (c) 16 (3)
17. ich 18. (a) 19, (d) 20. (a)

LoGiCc GATES

CHAPTER OBJECTIVES

= Describe the operation of the inverter, the AND gate, and the
OR gate

® Describe the operation of the NAND gate and the NOR gate

Express the operation of NOT, AND, OR, NAND, and NOR

{gates with Boolean algebra

Describe the operation of the excluthe-OR and exclusive-NOR

pates

» Recognize and use both the divtis shape logic gate symbok
and the rectangular outline logic gate rymbaok of ANSI/IEEE
Standard 91-1984

s Construet timing diagrami shewing the proper time relationthips

of inputs and outputs for the various logic gates

List specific fined-function integrated circuit devices that con-

tain the various logic gates

Use each logic gate in simple application:

[

3-1 THE INVERTER

INTRODUCTION

The basic logic operations have been discussed in Sec-
tion 1-3. The emphasis in this chapter s on the operation
and applications of logic gates. The relationship of input and
output waveforms of a gate wiing timing diagrams is

thoroughly covered.
Logic symbois used to represent the logic gates are in
! with ANSIfIEEE Jard 91-1984, This standard

has been adopted by private industry and the military for use
in internal documentation as well as published literature.

Since integrated circuits (ICs) are used in all applications,
the logic function of a device is generally of greater impor-
tance to the user rather than the detaiks of the component-
level circuit operation within the IC package, Therefors, for
simplicity in the use of available ICs, only their pin connec-
tions have been covered, The component level circuit oper-
ation and other relevant details will be covered in Chapter
11 on Integrated Circuit Technologies.

The inverter (NOT circuit) perfi

the op called i ion or comple iont, The

invener changes one logic level to the opposite level. In terms of bits, it changes a o (b

andaOtoal.

After completing this section, you should be able to

= [dentify negation and polarity indicators w [dentify an inverter by either ite distinctive
shape symbol or its rectangular outline symbol ® Froduce the troth table for an inverter
= Describe the logical operation of an inverter

LOGIC GATES

Standard logic symbals for the inverter are shown in Figure 3-1. Part (a) shows the dis-
tinctive shape symbols, and part (b) shows the rectangular outline symbols. Tn this textbook,
distinctive shape bols are g lly used; the rectangular outling symbols are
found in many industry publications, and you should become fumiliar with them as well.

(Logic symbols are in accordance with ANSIIEEE Standard 91-1984.)

= FIGURE 3-1

Standard logic symbols for inverter _DO_ _@
- Ak

{a Distinctive dhape symbaols (1) Rectangular satling symbsols
with pegation indicators with polaity indicators

The Negation and Polarity Indicators

The negation indicator is a “bubble” () that indicates inversion or complementation when it
appears on the input or output of any logic element, as shown in Figure 3-1(a) for the inverter.
Generally. inputs are on the left of a logic symbol and the output is on the right. When appear-
ing on the input, the bubble means that a 0 is the active or asserfed input state, and the input is
called an active-LOW input. When appearing on the output, the bubble means that a 0 is the
active or asserted output state, and the output is called an active-LOW output. The absence of
a bubble on input or output means that a 1 is the active or asserted state, and in this case, the
input or output is called active-HIGH.

The polarity or level indicator is a “wiangle”™ (C=) that indicates inversion when it appears
on the input or output of a logic element, as shown in Figure 3-1(b). When appearing on the
input, it means that a LOW level is the active or asserted input state. When appearing on the
output, it means that a LOW level is the active or asserted output state,

Either indicator (bubble or triangle) can be used both on distinctive shape symbols and on
rectangular outline symbols. Figure 3-1{a) indicates the principal inverter symbols used in
this text. Note that a change in the placement of the negation or polarity indicator does not
imply a change in the way an inverter operates.

Inverter Truth Table

When a HIGH level is applied 10 an inverter input. a LOW level will appear on its output,
When a LOW level is applied to its input, a HIGH will appear on its output. This operation is
summarized in Table 3-1, which shows the output for each possible input in terms of levels
and corresponding bits. A table such as this is called a truth table,

= TABLE 3-1
P
LOW (D) HIGH (1)
HIGH (1) LOW i)
Inverter Operation

Figure 3-2 shows the output of an inverter for a pulse input, where ¢, and 15 indicate the corre-
sponding points on the input and owtput pulse waveforms,

77

80 = DIGITAL FUNDAMENTALS

When the input is LOW, the output is HIGH; when the input is HIGH, the output is
LOW, thereby producing an inverted output pulse,

= FIGURE 3-2 HIGH (1) HIGH (1)
LOYW (i} L U LOW ()
i L1

Imverter operation with a pulie
input
Input palse Output pelse

Timing Diagrams

Recall from Chapter | that a timing diagram is basically a graph that accurately displays the
relationship of two or more waveforms with respect to each other on a time basis. For exam-
ple, the time relationship of the output pulse to the input pulse in Figure 3-2 can be shown
with a simple timing diagram by aligning the two pulses so that the occurrences of the pulse
edges appear in the proper time reladonship. The rising edge of the input pulse and the falling
edge of the output pulse occur at the same time (ideally). Similarly, the falling edge of the
input pulse and the rising edge of the output pulse occur at the same time (ideally). This
timing relationship is shown in Figure 3-3. Timing diagrams are especially useful for
illustrating the time relationship of digital with multiple pulses, as ple 3-1
illustrates.

» FIGURE 3-3 vt [|

Timing diagram for the case in H '

Figure 3-2 Cutput B

| EXAMPLE 3-1
A waveform is applied to an inverter in Figure 3-4. D ine the output

corresponding to the input and show the timing diagram. According to the placement of the
bubble, what is the active output state?

FIGURE 3-4

1
0 Input Do - Output

Solution The output waveform is exactly opposite to the input {inverted), as shown in Figure 3-5,
which is the basic timing diagram. The active or asserted output state is 0,

- FIGURE 3-5 Tnpul Lot
0

Supplementary Problem If the inverter is shown with the negative indicator (bubble) on the input instead of the
output, how is the timing diagram affected

Logic Expression for an Inverter

In Boolean algebra, which is the mathematics of logic circuits and will be covered thor-
oughly in Chapter 4, a vaniable is designated by a letter. The complement of a variable is des-
ignated by a bar over the letter. A variable can take on a value of either 1 or 0. If a given vari-
able is 1, its complement is 0 and vice versa. Boolean algebra uses variables and operators to
describe a logic circuit.

The operation of an inverter (NOT circuit) can be expressed as follows: If the input vani-
able is called A and the output variable is called X, then

X=A

This expression states that the output is the complement of the input, so if A = 0, then
X =1, andifA = 1, then X = 0. Figure 3-6 illustrates this. The complemented variable A can
be read as “A bar” or “not A"

* FIGURE 3-&
1 X=A

Application Example

Figure 3-7 shows a circuit for producing the 1's complement of an 8-bit binary number. The
bits of the binary number are applied to the inverter inputs and the 1's complement of the
number appears on the outputs.

T Wi

1's complement

Iiif,:;%" ol 1. When a 1 is on the input of an inverter, what is the output?

Answers are at the end of 2. An active HIGH pule (HI'GH level when aserted, LOW level when nnl) it required on

the chapter, an inverter input.

(a) Draw the appropriate logic symbol, using the distinctive shape and the negation

indicator, for the inverter in this application,

(b) Describe the output when a positive-going pulse is applied to the input of an

inverter.

LOGIC GATES =

B2 w DIGITAL FUNDAMENTALS

3'.-;..

Al

THE AND GATE

The AND gate is one of the basic gates that can be combined to form any logic function.
An AND gate can have two or more inputs and performs what is known as logical
multiplication.

Alter completing this section, you should be able to

= |denufy an AND gate by its distinctive shape symbol or by its rectangular outline symbaol
= Describe the operation of an AND gate = Generate the truth table for an AND gate with
any number of inputs ® Produce a timing diagram for an AND gate with any specified
input waveforms ® Write the logic expression for an AND gate with any number of inputs
= Discuss example of AND gate application

‘The term gare is used to describe a circuit that performs a basic logic operation. The AND
gale is composed of two or more inputs and a single output, as indicated by the standard logic
symbols shown in Figure 3-8. Inputs are on the left, and the output is on the right in each
symbol. Gates with two inputs are shown; howm'er. an AND gate can have any number uf
inputs greater than one. Although les of both distinctive shape sy and
outline symbols are shown, the distinctive shape symbol, shown in part (a), is used predomi-
nantly in this book.

* FIGURE 3-8
Standard logic symbols for the AND A —D_ 4 A n X
gate B — E I

{a) Distinctive shape {bh Rectanguler cutline
with the AND (&)
qualifying symiel

Operation of an AND Gate
An AND gate produces a HIGH output only when all of the inputs are HIGH. When any of
the inputs is LOW, the output is LOW, Therefore, the basic purpose of an AND gate is to
determine when certain conditions are simul Iy true, as indicated by HIGH levels on all
of its inputs, and to produce a HIGH on its output to indicate that all these conditions are true.
The inputs of the 2-input AND gate in Figure 3-8 are labelled A and B, and the output is
labelled X, The gate operation can be stated as follows:

For a 2-input AND gate, output X is HIGH if inputs A and B are HIGH; X is LOW if
either A or B is LOW, or if both A and B are LOW,

Figure 3-9 illustrates a 2-input AND gate with all four possibilities of input combinations
and the resulting output for each.

LYW ik LOW (1)
:D—m\\' i _ :D—L{JW«J:
LOW 1)) HIGH (1)

HIGH i1} HIGH ¢1)
LOW 10y ; :D—lminm
LOW ik HIGH i1y
4 FIGURE 3-9
An AND gate ean have more than tweo inputs

LOGIC GATES =

AND Gate Truth Table

The logical operation of a gate can be expressed with a truth table that lists all input combina-
tions with the ponding outputs, as illustrated in Table 3-2 for a 2-input AND gate, The
truth table can be expanded to any number of inputs. Although the terms HIGH and LOW
tend to give a “physical” sense to input and output states, the truth table is shown with 1s and
0s; a HIGH is equivalent to a 1 and a LOW is equivalent to a 0 in positive logic. For any AND
gate, regardless of the number of inputs, the output is HIGH onfy when alf inputs are HIGH.

* TABLE 3-2

INP i
Truth table for AND gate A” VTS5 2 0‘-" T

B
0 L]
o 1
1 0
1 1

- = =

HGiL O

= LOW o

The total number of possible combinations of binary inputs to a gate is determined by the
following formula:

N=2

where N is the number of possible input combinations and n is the number of input variobles.
To illustrate,

For two input variables: N = 2° = 4 combinations

For three input variables: N = 2 = § combinations

For four input variables: N = 2* = 16 combinations
You can determine the number of input bit combinations for gates with any number of inputs
by using Equation 3-1.

EXAMPLE 3-2
{a) Develop the truth table for a 3-input AND gate.

() Determine the total number of possible input combinations for a £-inpet AND gate,

Solution () There are cight possible input combinations (2* = &) for a 3-input AND gate. The
input side of the truth table {Table 3-3} shows all eight combinations of three bits.
The output side is all 0s except when all three input bits are 1s,

83

B4

= DIGITAL FUNDAMENTALS

> TABLE 3-3

INPUTS outpuT |
A B [+ X]

0 0 0 0 i
0 i 1 0 |
0 1 0 0

1 1 0

0 0 0

0 1 0

1 0

1 1

e i~

(b) N = 2* = 16. There are 16 possible combinations of input bits for a 4-input AND
gate,

Develop the truth table for a 4-input AND gate.

“Pulsed Operation

In most applications, the inputs to a gate are not stationary levels but are voltage waveforms
that change frequently between HIGH and LOW logic levels. Now, let us look at the operation
of AND gates with pulse waveform inputs, keeping in mind that an AND gate obeys the truth
table operation regardless of whether its inputs are constant levels or levels that change back
and forth,

Let us examine the pulsed operation of an AND gate by looking at the inputs with respect
to each other in order to determine the output level at any given time. In Figure 3-10, the
inputs are both HIGH (1) during the time interval, r,, making the output HIGH (1) during this
interval. During time interval 1, input A is LOW (0) and input 8 is HIGH (1), so the output is
LOW (0). During time interval £;, both inputs are HIGH (1) again, and therefore the output is
HIGH (1). During time interval £y, input A is HIGH (1) and input B is LOW (0), resulting in a
LOW (0) output, Finally, during time interval s, input A is LOW (0), input B is LOW (0),
and the output is therefore LOW (0). As you know, a diagram of input and output waveforms
showing time relationships is called a timing diggram.

+ FIGURE 3-10 l'

LOGIC GATES = B5

I EXAMPLE 3-3
If two waveforms, A and B, are applied to the AND gate inputs as in Figure 3-11, what is

the resulting output waveform?

HIGH
1 Low —

B .
5 HIGH
Low

. HIGH
¥ opow

AFGURE 3-11 -,

Solution The output waveform X is HIGH only when both A and # waveforms are HIGH as shown
in the timing disgram in Figere 3-11.

ppl ¥ Probli I ine the output waveform and show s timing dingram if the second and fourth pulses
in waveform A of Figure 3-11 sare replaced by LOW Jevels,

Remember, when analyzing the pulsed operation of logic gates, it is important to pay care-
ful antention to the time relationships of all the inputs with respect to each other and 1o the
output.

| EXAMPLE 3-4
Tor the two input waveforms, A and B, in Fagure 3-12, show the output waveform with its

proper relation to the inputs,

HIGH ¥ : ;
ToLow [' !
Biprats T | A
MG | o — X
LW -
i 1]
1 1]
I \
] 1 [
; HIGH ! : I - 4 i
Oupus X i Fl
AFIGURE 3-12

Solution The output waveform is HIGH only when both of the input waveforms are HIGH as shown
in the timing diagram.

Supplementary Problem Show the output waveform if the B input to the AND gate in Figure 3-12 is always HIGH.

86 ® DIGITAL FUNDAMENTALS

I EXAMPLE 3-5

Selution

. Supplementary Problem

* FIGURE 3-14

For the 3-input AND gate in Figure 3-13, determine the output waveform in relation to the
inputs,

4 FIGURE 3-13

The output waveform X of the 3-input AND gate is HIGH only when all three input wave-
forms A, B, and € are HIGH.

‘What is the output waveform of the AND gate in Figure 3—13 if the C input is always
HIGH?

Logic Expressions for an AND Gate

The logical AND function of two variables is ref lly either by placing a
dot between the two variables, as A - B, or by simply writing the adjacent letters without the
dot. as AB. We will normally use the latter notation because it is easler to write.

Boolean multiplication follows the same basic rules g ing binary ipli
which were discussed in Chapter 2 and are as follows:

4 "

Boolean multiplication is the same as the AND function.

The operation of a 2-input AND gate can be expressed in equation form as follows: If one
input variable is A, the other input variable is 8, and the output variable is X, then the Boolean
expression is

X=AB
i, Wh:n iabl.

Figure 3-14(a) shows the gate with the input and output
are shown together like AB, ABC, ABCD., they are ANDed.

A

4 A "
X=AR B X=AbC i X aARCD

4 L8 o

ia) by ich

To extend the AND expression 1o more than two input variables, simply use a new letter for
each input variable. The function of a 3-input AND gate, for example, can be expressed as
X = ABC, where A, B, and C are the input variables, The expression for a 4-input AND gate
can be X = ABCD, and so on. Pans (b) and (¢) of Figure 3-14 show AND gates with three
and four input variables, respectively.

You can evaluate an AND gate operation by using the Boolean expressions for the output.
For example, each variable on the inputs can be either a 1 or a 0: so for the 2-input AND gate,
make substitutions in the equation for the output, X = AB, as shown in Tuble 3—4. This evalua-
tion shows that the output X of an AND gate is a | (HIGH) only when both inputs are Is
(HIGHs). A similar analysis can be made for any number of input variables.

» TABLE 3-4

Application Examples
The AND Gate as an Enable/Inhibit Device A common application of the AND gate is 0
enable (that is, 1o allow) the passuge of a signal (pulse waveform) from one poeint to another
at certain times and to inhibit (prevent) the passage at other times.

A simple example of this particular use of an AND gate is shown in Figure 3-15, where the
AND gate controls the passage of a signal (waveform A). The enable pulse is spplied at
B input. When the enable pulse is HIGH, waveform A passes through the gate, and when the
enable pulse is LOW, waveform A is prevented from passing through the gate, that is. inhib-
ited (or the gate is disabled).

During the 1 second (1 s) interval of the enable pulse. a cerain number of pulses in wave-
form A pass through the AND gate 1 the counter. The number of pulses passing through dur-
ing the | s interval is equal 1o the freq of A. For ple, Figure 3-15 shows
six pulses in one second, which is a frequency of 6 Hz. If 1000 pulses pass through the gate in
the 1 s interval of the enable pulse, there are 1000 pulses/s, or a frequency of 1000 He.

4 FIGURE 3-15

LOGIC GATES =

87

88 ® DIGITAL FUNDAMENTALS

I SECTION 3-2
EEVIEW 1. When is the output of an AND gate HIGH?

» FIGURE 3-17

2. When is the output of an AND gate LOW?

THE OR GATE

‘The OR gate is another of the basic gates from which all logic functions are constructed. An
OR gate can have two or more inputs and performs what is known as logical

addition,

After completing this section, you should be able to

= [dentify an OR gate by its distinctive shape symbol or by its rectangular outline

symbol = Describe the operation of an OR gate = Generate the truth table for an OR
gate with any number of inputs 8 Produce a timing diagram for an OR gate with any
specified input waveforms ® Write the logic expression for an OR gate with any number
of inputs = Discuss example of OR gate application

An OR gate has two or more inputs and one output, as indicated by the standard logic
symbols in Figure 3-16, where OR gates with two inputs are illustrated. An OR gate can have
any number of inputs greater than one. Although both distinctive shape and rectangular
outline symbols are shown, the distinctive shape OR gate symbol is used in this textbook.

» FIGURE 3-1&

Standard logic symbal for OR gate : :D_ > ; B

{2} Distinctive shape (b} Rectangular outline
with the OR (1}
qualifying symbol

Operation of an OR Gate

An OR gate produces a HIGH on the output when any of the inputs is HIGH. The output is
LOW only when all of the inputs are LOW. Therefore, an OR gate d ines when one or
more of its inputs are HIGH and produces a HIGH on its output to indicate this condition. The
inputs of the 2-input OR gate in Figure 3-16 are labelled A and B, and the output is labelled X.
The operation of the gate can be stated as follows:

For a 2-input OR gate, output X is HIGH if either input A or input B is HIGH, or if

both A und B are HIGH; X is LOW if both A and B are LOW.

The HIGH level is the active or asserted output level for the OR gate. Figure 3-17 illus-
trates the operation for a 2-input OR gate for all four possible input combinations.

LOW iy 7 LOW (i)
LOW (0} HIGH {1}
LOW ity HIGH 1)

HIGH (1) HIGH (1)
HIGH (1) HIGH (1}
LOW (0) HIGH (1)

OR Gate Truth Table

The operation of a 2-input OR gate is described in Table 3-5. This truth table can be expanded
for any number of inputs; but regardless of the number of inputs, the output is HIGH when
one or more of the inputs are HIGH.

> TABLE 3-5
Truth table for OR gate INPUTS QOUTPUT
A B X
0 0 0
0 I |
1 4] 1
1 1 I

1= HIGH, 0 = LOW,

Pulsed Operation

Now, let us look at the operation of an OR gate with pulsed inputs, keeping in mind its logical
operation. Again, the important thing in the analysis of gate operation with pulsed

is the time relationship of all the i involved. For ple, in Figure 3-18, inputs A
and B are both HIGH (1} during time interval ¢, making the output HIGH (1). During time
interval 1, input A is LOW (0), but because input 8 is HIGH (1), the output is HIGH (1). Both
inputs are LOW (0) during time interval 15, so there is a LOW (0) output during this time.
During time interval 14, the output is HIGH (1) because input A is HIGH (1),

> FIGURE 3-18

In this illustration. we have simply applied the truth table operation of the OR gate 10 each
of the time intervals during which the levels are nonchanging. Examples 3-6 through 3-8
further illustrate OR gate operation with wavelorms on the inputs.

LOGIC GATES

89

90 ® DIGITAL FUNDAMENTALS

[Imum.z 3-6

Solution

1f the two input waveforms, A ww. in Figure 3-19 are applied 1o the OR gate, what is the
resulting output waveform?

T

walril
BT EE '

owax [AL

ettt
When either input or both mpuis are HIGH,
the ooiput is HIGH.

4 FIGURE 3-19

The output waveform X of a 2-input OR gate is HIGH when either or both input wave-
hmmﬂGHuMmmmmwmhmsmMmpmmwhmm
mHlGHHﬂnmnnn. .

5”|mmm.r. 3-7

Dy ine the output and show the timing diagram if input A is changed such
that it is HIGH from the beginning of the existing first pulse to the end of the existing
second pulse,

For the two input waveforms, A and B, in Figure 3-20, show the output waveform with its
proper relation to the inputs,

A FIGURE 3-20

When either or both input waveforms are HIGH, the output is HIGH as shown by the out-
put waveform X in the timing diagram.

D ine the output and show the timing diagram if the middle pulse of input

A is replaced by a LOW level.

LOGIZ GATES = 91

' | EXAMPLE 3-8 i
For the 3-input OR gate in Figure 3-21, determine the output waveform in proper time

relation to the inputs,

A FIGURE 3-21

Selution The output is HIGH when one or more of the input waveforms are HIGH as indicated by
the output waveform X in the timing diagram,

Supplementary Problem Determine the output waveform and show the timing diagram if input C is always LOW.

Logic Expressions for an OR Gate
The logical OR function of two variables is ref d math i by a + ber the
two variables, for example, A + B.

Addition in Boolean algebra involves variables whose values are either binary 1 or binary
0. The basic rules for Boolean addition are as follows:

0+0=0
0+1=1
L& Q=1
L:1=1

Boolean addition is the same as the OR function.

Notice that Boolean addition differs from binary addition in the case where two 15 are
added. There is no carry in Boolean addition.
The operation of a 2-input OR gate can be expressed as follows: If one input variable is A,
if the other input variable is B, and if the output variable is X, then the Boolean expression is
X=A+B

Figure 3-22(a) shows the gate logic symbol with input and output variables labelled.

A A

(a) (L1} fch

(=it

4 FIGURE 3-22

#2 ® DIGITAL FUNDAMENTALS

To extend the OR expression to more than two input variables, a new letter is used for each
additional variable. For instance, the function of a 3-input OR gate can be expressed as
X =A+ B+ C. The expression for a 4-input OR gate can be writenas X =A + B+ C+ D,
and 5o on, Parts (b) and (c) of Figure 3-22 show OR gates with three and four input variables,
respectively.

()R zate opemmn A be e\rallmarl by using the Boolean expressions for the output X by
ions of 1 and 0 values for the input variables, as shown in
Table 3-6 fat a 2 -input OR gate. This evaluation shows that the output X of an OR gate isa 1
(HIGH) when any one or more of the inputs are | (HIGH). A similar analysis can be extended
to OR gates with any number of input variables.

= TABLE 3-6

Application Example

A simplified portion of an intrusion detection and alarm system is shown in Figure 3-23. This
system could be used for one room in a home—a room with two windows and a door. The
sensors are magnetic switches that produce a HIGH output when open and a LOW output
when closed. As long as the windows and the door are secured, the switches are closed and all
three of the OR gate inputs are LOW. When one of the windows or the door is opened, a
HIGH is produced on that input to the OR gate and the gate output goes HIGH. It then acti-
vates and latches an alarm circuit to wamn of the intrusion.

* FIGURE 3-23 Upen doorfaindow
SENITS

HIGH = Open
LOW = Closed

B

]

m—

4]

| SECTION 3-3 :
SRV 1. When is the cutput of an OR gate HIGH?

2. When is the cutput of an OR gate LOW?
3. Describe the truth table fora 3-input OR gate.

LOGIC GATES

THE NAND GATE

The NAND gate is a popular logic element because it can be used as a universal gate;
that is, NAND gates can be used in combination to perform the AND, OR, and inverter
operations. The universal property of the NAND gate will be examined thoroughly in
Chapter 5.

After completing this section, you should be able to

u [dentify a NAND gate by its distinctive shape symbol or by its rectangular outline
symbol ® Describe the operation of a NAND gate ® Develop the truth table for a
NAND gate with any number of inputs ® Produce a timing diagram for a NAND gate
with any specified input waveforms @ Write the logic expression for a NAND gate
with any number of inputs - ® Describe NAND gate operation in terms of its negative-
OR equivalent = Discuss examples of NAND gate applications

The term NAND is a contraction of NOT-AND and implies an AND function with a com-
plemented (inverted) output. The standard logic symbol for a 2-input NAND gate and its
equivalency to an AND gate followed by an inverter are shown in Figure 3-24(a), where the
symbol = means equivalent to. A rectangular outline symbol is shown in part (b).

A A 1
] o B

(1) Distinctive shape, 2-input NAND gate and its {b) Rectangular outline,
NOT/AND equivalent Ziinput NAND gatc
with polarity indicutor

4 FIGURE 3-24
Standard NAND gate logic symbols

Operation of a NAND Gate

A NAND gate produces a LOW output only when all the inputs are HIGH. When any of the
inputs is LOW, the output will be HIGH. For the specific case of a 2-input NAND pate, as
shown in Figure 3-24 with the inputs labelled A and & and the output labelled X, the operation
can be stated as follows:

For a 2-input NAND gate, output X is LOW if inputs A and B are HIGH; X is HIGH
if either A or B is LOW, or il both A and B are LOW.

Note that this operation is opposite that of the AND in terms of the output level. In a NAND
gate, the LOW level (0) is the active or asserted output level, as indicated by the bubble on the
output. Figure 3-25 illustrates the operation of a 2-input NAND gate for all four input combi-
nations, and Table 3-7 is the truth table izing the logical operation of the 2-input
NAND gate,

93

94 = DIGITAL FUNDAMENTALS
LOW {0y B LOW (0
LOW (i :DD_HI(I"I]I HIGH (1) :D:_HIG"III
HIGH (1} :D’_'“C'“ | HIGH (1) :D’_mw =
LOW (1) " HIGH (1) i

A FIGURE 3-25

= TABLE 3-7

. i
A 8 X i

(] o 1 d

o L} 1 i

1 0 1 ¥

1 1 0 i

i

1 5= HIGH, 0 = LOW. B

.

[== e e

Pulsed Operation

Now, let us look at the pulsed operation of a NAND gate. Remember from the truth table that
the only time a LOW output occurs is when all of the inputs are HIGH. Examples 3-9 and
3-10 illustrate pulsed operation.

I EXAMPLE 3-9
If the two waveforms A and & shown in Figure 3-26 are applied to the NAND gate inputs,

determine the resulting output wavefonm.

=
o
I

b HIGH dunng
v Therel

FIGURE 3-26&

Selution Output waveform X is LOW only during the four time intervals when both input wave-
forms A and 8 are HIGH as shown in the timing diagram.

Supplementary Problem Determine the output waveform and show the timing diagram if input waveform B is
inverted.

LOGIC GATES = 395

I EXAMPLE 3-10
Shew the output waveform for the 3-input NAND gate in Figure 3-27 with its proper time

relationship to the inputs.

at T

~ FIGURE 3—27

Lo

Solution The output waveform X is LOW only when all three input waveforms are HIGH as shown

in the timing diagram.

Supplementary Proflem - Determine the output wavelorm amd shew the timing diagram if inpot waveform A is

inverted.

Mg OR Equivalent Of ion of @ NAND Gate Inherent in a NAND gate's operation
is thc fact that one or more LOW inputs produce a HIGH output. Table 3-7 shows that output
X is HIGH (1) when any of the inputs, A and B, are LOW (0). From this viewpoint, a NAND
gate can be used for un OR operation that requires one or more LOW inputs o produce a
HIGH output, This aspect of NAND operation is referred to as negative-OR. The term nega-
tive in this context means that the inputs are defined to be in the active or asserted state when
LOW.

For a 2-input NAND gate performing a negative-OR operation, output X is HIGH if
cither input A or input B is LOW, or if both A and 8 are LOW.

When a NANTD gate is used to detect one or more LOWs on its inputs rather than all
HIGHs, it is performing the negative-OR ion and is re d by the dard logic
symbol a}h:w-n in Fxgu.m 3-28. Although l.hc two symbols in Figure 3-28 represent the same
physical gate, they serve 1o define its role or mode of operation in a particular application, as

illustrated by Examples 3-11 through 3-13.

AD—="0>—
NAND Negative-OR

& FIGURE 3-2§
Standard symbaols of NAND gate

96 = DIGITAL FUNDAMENTALS

| EXAMPLE 3-11

Solution

Supplementary Problem

EXAMPLE 3-12

Solution

A manufacturing plant uses two tanks to store a certain ligquid chemical that is required in a
manufacturing process. Each tank has a sensor that detects when the chemical level drops
10 25% of full. The sensors produce a 5V level when the tanks are more than one-quarter
full. When the volume of chemical in a tank drops to one-quarter full, the sensor puts out a
OV level.

It is required that a single green light-emitting diode (LED) on an indicator panel show
when both tanks are more than one-quarter full. Show how a NAND gate can be used to
implement this function.

Figure 3-29 shows a NAND gate with its two inputs connected 1o the tank level sensors
and its output connected to the indicstor panel. The operation can be stated as follows: 1f
tank A and tank B are above one~quarter full, the LED is on.

v
Task A +
I.evel senson
HIGH | ?‘l =3
O™ | Grcen tight
HIGH Indicates bty
tanhs are
ek & yrenter than
14 full
I che:l SERSN

i FIGURE 3-2%

As long as both sensor outputs are HIGH (3 V), indicating that both tanks are more than
one-quarter full, the NAND gate output is LOW (0 V). The green LED circuit is aranged
so that a LOW voltage tums it on.

How can the circuit of Figure 3-29 be modified to monitor the levels in three tanks rather
than two?

The supervisor of the manufacturing process described in Example 3-11 has decided that
he would prefer to have a red LED display come on when at least one of the tanks fall to
the quarter-full level eather than have the green LED d:splay indicate when both are above
one quarter. Show how this requi can be impl

Figure 3-30 shows a NAND gate operating as a negative-OR gate 1o detect the occurrence
of at least one LOW on its inputs. A sensor puts out a LOW voltage if the volume in its
tank goes to one-quarter full or less. When this happens, the gate output goes HIGH. The
red LED circuit in the pane] is arranged so that a HIGH voltage wrns it on. The operation
can be stated as follows: If tank A or tank B or both are below one-quarter full, the LED
is on.

Supplementary Problem

| EXAMPLE 3-13

Salution

LOGIC GATES =

Tank A

LOW

Tank B

FIGURE 3-30

Notice that, in this example and in Example 3-11. the same Z-input NAND gate is used,
but a different gate symbol is used in the schematic, illustrating the different way in which
the NAND and negative-OR operations are used.

How can the circuit in Figure 3-30 be modified to menitor four tanks rather than two?

For the 4-input NAND gate in Figure 3-31, operating as a negalive-OR, determine the
output with respect to the inputs,

FIGURE 3-31

The output waveform X is HIGH any time an inpat waveform is LOW as shown in the
timing diagram.

-y Problam

| the output wavef if input i A is mverted before it is applied o the

97

98 = DIGITAL FUNDAMENTALS

Logic Expressions for a NAND Gate
The Boolean expression for the output of a 2-input NAND gate is
X =AB

This expression says that the two input variables, A and B, are first ANDed and then com-
plemented, as indicated by the bar over the AND expression. This is a description in equa-
tion form of the operation of a NAND gate with two inputs, Evaluating this expression for
all possible values of the two input variables, you get the results shown in Table 3-8,

i TABLE 3-8
F°]
i
0 0 0 0=0=1 j
0 i o l=0=1 |
1 0 T0=0=1
1 1 Ti=T=0

Once an expression is determined for a given logic function, that function can be evaluated
for all possible values of the variables. The evaluation tells you exactly what the output of the

logic circuit is for each of the input conditions, and it therefore gives you a complete descrip-
tion of the circuit’s !ogn.‘ ope'mlon The NAND expression can be extended to more than two
input variables by i g additional letters to ref the other variables.

SECTION 3-4 5
IHE\‘IEW 1. When is the cutput of a NAND gate LOW?

2. When is the output of 2 NAND gate HIGH?
3. Deseribe the functional differences between a NAND gate and a negative-OR gate, Do
they both have the ame truth table?

4. Wiite the output expression for a NAND gate with inputs A, B and C.

THE NOR GATE ;

The NOR gate, like the NAND gate, is a useful logic element because it can also be used as
a universal gate; that is, NOR gates can be used in combination to perform the AND, OR,
and inverter operations. The universal property of the NOR gate will be examined thor-
oughly in Chapter 5.

After completing this section, you should be able to

= [dentify a NOR gate by its distinctive shape symbaol or by its rectangular outline symbol

= Describe the operation of a NOR gate = Develop the truth table for a NOR gate with
any number of inputs = Produce a timing diagram for a NOR gate with any specified input
waveforms ® Write the logic expression for a NOR gate with any number of inputs

= Describe NOR gate operution in terms of its negative-AND equivalent w Discuss exam-
ples of NOR gate applications

LOGIC GATES

The term NOR is a contraction of NOT-OR and implies an OR function with an inverted

d) output. The d logic symbol for a 2-input NOR gate and its equivalent

OR g:n.e followed by an inverter are shown in Figure 3-32(a). A rectangular outline symbol is
shown in part (b).

—x = X X
s B]

{a) Distinctive shape, 2-inpus NOR gate and its NOTAOR (b} Rectangular outline, 2-input
equivalent MOR gate with polarity indicaor

A FIGURE 3-32
Standard NOR gate logic symbos.

Operation of a NOR Gate

A NOR gate produces a LOW output when any of its inputs is HIGH. Only when all of its
inputs are LOW is the output HIGH. For the specific case of a 2-input NOR gate, as shown in
Figure 3-32 with the inputs labelled A and B and the output labelled X, the operation can be
stated as follows:

For a 2-input NOR gate, output X is LOW if either input A or input B is HIGH, or if
both A and B are HIGH; X is HIGH if both A and B are LOW,

This operation results in an output level opposite that of the OR gate. In a NOR gate, the
LOW output is the active or asserted output level as indicated by the bubble on the output.
Figure 3-33 illustrates the operation of a 2-input NOR gate for all four possible input combi-
nations, and Table 3-9 is the truth table for a 2-input NOR gate.

LOW iy . LOW (i)

HIGH (1) LOW (0
LOW iy HIGH (1
HIGH (1) HIGH (1)

LOW it . LOW (i
LOW 0y HIGH i1}

A FIGURE 3-33

= TABLE 3-9

Truth table for NOR gate INPUTS OU‘;F'UT |

>
- o - = B

0
0
1
1

Pulsed Operation

The next two examples illusirate the operation of a NOR gate with pulsed inputs. Again, as
with the other types of gates, we will simply follow the truth table operation to determine the
output waveforms in the proper time relationship to the inputs.

99

100 = DIGITAL FUNDAMENTALS

Supplementary Problem

If the two waveforms shown in Figure 3-34 are applied to a NOR gate, what is the result-
ing output waveform?

|

=
0

A FIGURE 31-34

Whenever any input of the NOR gate is HIGH, the output is LOW as shown by the output
waveform X in the timing diagram.

Invert input B and determine the output waveform in relation to the inputs.

‘EXAMPLE 3-15

Supplementary Problem

Show the output waveform for the 3-input NOR gate in Figure 3-35 with the proper time
relation to the inputs.

4 FIGURE 3-35

The output X is LOW when any input is HIGH as shown by the output waveform X in the
timing diagram.
With the B and C inputs inverted, determine the output and show the timing diagram.

Negative-AND Equivafent Operation of the NOR Gate A NOR gate, like the NAND,
has another aspect of its operation that is inherent in the way it logically functions. Table
3-9 shows that a HIGH is produced on the gate output only if all of the inputs are LOW,
From this viewpoint, a NOR gate can be used for an AND operation that requires all
LOW inputs to produce a HIGH output. This aspect of NOR operation is called

LOGIC GATES = 101

negative-AND. The term negative in this context means that the inputs are defined to be
in the active or asserted stale when LOW,

For a 2-input NOR gate performing a negative- AND operation, output X is HIGH
if both inputs A and B are LOW,

When a NOR gate is used to detect all LOWSs on its inputs rather than one or more
HIGHs, it is performing the negative-AND ion and is ref I by the dard

symbol in Figure 3-36. It is imponant o remember that the two symbols in Figure 3-36
represent the sume physical gate and serve only (o distinguish between the two modes of

its

ing three iples illustrate this,

f The

= FIGURE 3-36

EXAMPLE 3-16

Solution

Supplementary Problem

| EXAMPLE 3-17

Solution

Jo—-="

NOR Negative- AND

A device is needed to indicate when two LOW levels occur simultancously on its inputs
and to produce a HIGH output as an indication. Specify the device.

A NOR gate operating as a neg AND gate is required to produce a HIGH outpat when
baoth inputs are LOW, as shown in Figure 3-37,

= FIGURE 3-37

Low :D_ HIGH
LOwW

A device is needed to indicate when one or two HIGH levels occur on its inputs and to pro-
duce a LOW output as an indication. Specify the device.

As part of an aircraft’s functional monitoring system, a circuil is required to indicate the
states of the landing gears prior to landing. A green LED display tums on if all three pears
are properly extended when the “gear down™ switch has been activated in preparation for
landing. A red LED display tums on if any of the gears fail to extend properly prior to
landing. When a landing gear is extended, its sensor produces a LOW voltage. When a
landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet
this requirement.

Power is applied to the circuit only when the “gear down™ switch its activated. Use a NOR
gate for cach of the two requirements as shown in Figure 3=38. One NOR gate operates as
a negative-AND to detect a LOW from each of the three landing gear sensors. When all
three of the gate inputs are LOW, the three landing gears are properly extended and the
resulting HIGH output from the negative-AND gate tums on the green LED display. The
other NOR gate operates as a NOR to detect if one or more of the landing gears remain
retracted when the “gear down™ switch is activated. When one or more of the landing gears

102 = DIGITAL FUNDAMENTALS

remain retracted, the resulting HIGH from the sensor is detected by the NOR gate, which
produces a LOW output to turn on the red LED warning display.

-V

Red LED
¥ Gear retracted

Gireen LED
" All gear extended

4 FIGURE 3-38

Supplementary Problem mwummuuwwmummm:ngmmmmmm
off, assuming a LOW output is required to activate an LED display?

= Se—— T S———— N
I’w&e4—mpulNORgatznpuumgnawANDianme3—39deunﬂmlhewA

put relative to the inputs.
A — =
[4
S x
c7] r @
o] I
) 1
1 1
KI i -—
A FIGURE 3-39

Solution Any time all of the input waveforms are LOW, the output is HIGH s shown by output
fi X in the timing di

Suppl, y Problem Dy ine the output with input D inverted and show the timing diagram.

LOGIC GATES = 103

Logic Expressions for a NOR Gate
The Boolean expression for the output of a 2-input NOR gate can be writlen as
X=A+R
This equation says that the two mput variables are first ORed and then complemented, as indi-
cated by the bar over the OR exy g this expression, you get the results shown

in Thbhe 3-10. The NOR expression can be extended 1o more than two input variables by
i i letters 1o ref the other variables,

= TABLE 31-10

1. When ntheoutpulofaNORgaﬂe HIGH?
2. When is the output of a NOR gate LOW?

3. Describe the functional difference between 3 NOR gate and a negative-AND gate. Do
they both have the same truth table?

4. Write the output expression for a 3-input NOR with input variables A, B, and C.

SECTION 3-5
REVIEW

| THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

clusive-OR and exclusive-NOR gates are formed by 2 combination of other gates
already discussed, as you will see in Chapter 5. However, because of their fundamental

n many applications, these gates are often treated as basic logic clements
wllh their own unigue symbols,

Afler completing this section, you should be able 1o

= [dentify the exclusive-OR and exclusive-NOR gates by their distinctive shape sym-
bals or by their rectangular outline symbols = Describe the operations of exclusive-
OR and exclusive-NOR gates » Show the truth tables for exclusive-OR and exclusive-
NOR gates = Produce a timing diagram for an exclusive-OR or exclusive-NOR gate
with any specified input ® Discuss ples of exclusive-OR and exclu-
sive-NOR gate applications

The Exclusive-OR Gate

bols for an exclusive-OR (XOR for shor) gate are shown in Figure 340, The
XOR gate has only two inputs.

4 FIGURE 3-40
Standard logic symbols for the i :)D_ e A ﬂx
excluive-OR gate &

fa) Distinctive shape (b Rectangular cutline with the XOR

104 = DIGITAL FUNDAMENTALS

The output of an exclusive-OR gate is HIGH only when the two inputs are at opposile
logic levels. This operation can be stated as follows with reference 1o inputs A and B and
output X:

For an exclusive-OR gate, output X is HIGH il input A is LOW and input B is HIGH,
or if input A is HIGH and input B is LOW; X is LOW if A and B are both HIGH or
bath LOW.

The four possible input combinations and the resulting outputs for an XOR gate are illus-
trated in Figure 3—41. The HIGH level is the active or asserted output level and oceurs only
when the inputs are at opposite levels, The operation of an XOR gate is summarized in the
truth table shown in Table 3-11.

= FIGURE 3-41 LEW 1y i LOW iy
All powible logic level for an LOW AT ||[{;|1||1:)D_”m"”'
exclusive-CR gate
HIGH (1) :D_ i 6 HIGH (1) ”
Lowe b HIGH 1) s

= TABLE 3-11

Truth table for an exchuive-OR gate ;NPUTSB. ou;nur
0 0 0
o ! 1
1 0 1
I 1 0

IEMMPLE 3-19 '
A certain system ins two identical circuits operating in parallel. As long as both are |

operating properly, the outputs of both circuits are always the same. If one of the circuits
fails, the outputs will be at opposite levels at some time. Devise o way to detect that a fail-
ure has occurred in one of the circuits.

Selution The outputs of the circuits are connected to the inputs of an XOR gate as shown in Figure
3-42. A failure in either one of the circuits produces differing outputs, which cause the
XOR inputs to be at opposite levels, This Jition prod a HIGH on the output of the
XOR gate, indicating a failure in one of the circuits,

HIGH

LOW

}. HIGH findicates failure)

Clreuit 8

A FIGURE 3-42

Supplementary Problem Will the exclusive-OR gate always detect simultaneous failures in both circuits of
Figure 3427 If not, under what condition?

LOGIC GATES

The Exclusive-NOR Gate

Standard symbols for an exclosive-NOR (XNOR) gate are shown in Figure 3-43, Like the
XOR gate, an XNOR has only two inputs. The bubble on the output of the XNOR symbol
indicates that its output is opposite that of the XOR gate. When the two input logic levels are
opposite, the output of the exclusive-NOR gate is LOW. The operation can be stated as
follows (A and B are inputs, X is output):

For an exclusive-NOR gate, output X is LOW if input A is LOW and input B is
HIGH, or if A is HIGH and 8 is LOW; X is HIGH if A and B are both HIGH or both
LOW,

A . A
| S S] S

{a) Distinctive shape (bh Rectamgular oulline

4 FIGURE 3-43
Standard logic symbols for the exclusive-NOR gate

The four ible input inations and the Iting outputs for an XNOR gate are
shown in Figure 344, The operation of an XNOR gate is summarized in Table 3-12. Notice
that the output is HIGH when the same level is on both inputs.

W])
i :D— HIGH (1) e ':D—Luw.m
LOW 40y HIGH i1}
“““"“:}Do—”“"‘" H";"'“:)DD—-HK'H:] .
OW i) SHT)
LOW (1 HIGH i1

A FIGURE 3-44

> TABLE 3-12

e P
gate o

>

B
0 0 1
[I U]
1 (1]]
I 1 1

Pulsed Operation

As we have done with the other gates, let us examine the operation of XOR and XNOR gates
under pulsed input conditions. As before, we apply the truth table operation during each dis-
tinct time interval of the pulsed inputs, as illustrated in Figure 345 for an XOR gate. You can
see that the input waveforms A and B are at opposite levels during time intervals ¢, and 1,
Therefore, the output X is HIGH during these two times. Since both inputs are at the same
level, either both HIGH or both LOW, during time intervals 1; and ry, the output is LOW
during those times as shown in the timing diagram.

105

106 ® DIGITAL FUNDAMENTALS

- FIGURE 3-45 —|
A 1 o

—w-—r—*-:*a—-r-—:—-{
1 i
]

L

IwMPLE 3-20 . o
D ine the output fi for the XOR gate and for the XNOR gate, given the input

waveforms, A and B, in Figure 3-46.

5
x

A FIGURE 3-4&

The output forms are shown in Figure 346 NoﬁoelhauheXDRnulpmisIﬂGH
only when both inputs are at opposite levels. Notice that the XNOR output is HIGH only
when both inputs are the same.

D ine the output fi if the two input waveforms, A and B, are inverted.

Application Example

An exclusive-OR gate can be nsed as a two-bit adder. Recall from Chapter 2 that the basic
rules for binary addition arc as follows: 0 + 0 =00+ 1= L1+ 0=1and I + 1 =10,
An examination of the truth table for an XOR gate will show you that its output is the binary
sum of the two input bits, In the case where the inputs are both 1s, the output is the sum (), but
you lose the carry ol 1. In Chapter 6 you will see how XOR gates are combined to make com-
plete adding circuits, Figure 347 illustrates an XOR gate used as a basic adder.

v

FIGURE 3-47

Input bits Output (sum)
A B b}

| LR 1. When is the output of an XOR gate HIGH?

2. When is the output of an XNOR gate HIGH?

= | EXAMPLES OF IC GATES

There are three digitl integrated cireuit (IC) technologies that are used 1o implement the
basic logic gates. Two of these, CMOS and TTL, are the most widely used and the third,
ECL, is used in more specialized appli The logic operations of NOT, AND, OR,
NAND, NOR, and exclusive-OR are the same regandless of the IC echnology used; that is,
an AND gate has the same logic function whether it is implemented with CMOS, TTL, or
ECL, We will not cover the IC technologies in this section,

After completing this section, vou should be able 1o

- Tl d available ICs for imph on of gate functi ® Und d pin config-

uration diagrams and logic symbols

CMOS stands for Complementary Metal-Oxide Semiconductor and is implemented with a
type of field-effect transistor. TTL stands for Transistor-Transistor Logic and is implemented
with bipolar junction transistors. ECL, Emitter-Coupled Logic, is also a bipolar technology.
The coverage in this section is restricted to only the commercially available gate ICs, their pin
configuration diagrams, and logic symbols. The IC technologies at the circuit component level
and their electrical chaructenstics will be covered in Chapter 1.

Available ICs for Gates

All the logic functions introduced in this chapter are iall ilable in i d
circuit (IC) form. Table 3-13 gives some of the available gate ICs.

Pin Configuration Diagrams

All the basic logic operations, NOT, AND, OR, NAND, NOR, and E..ciusive-OR (XOR) in IC
form are available in DIP. The pin configuration diagrams of most of the devices given in
Table 3-13 are shown in Figure 3-48. From the pin configuration dizgrams, we observe that

LOGIC GATES = 107

3. How can you use 2n XOR gate to detect when twe bits are different?

108 = DIGITAL FUNDAMENTALS

these 1ICs contuin multiple identical gates. For example, 7400 IC chip is o quadruple 2-input
NAND gate available in [4-pin DIF. It has four identical, independent 2-input NAND gates
armanged as shown in Figure 3-48(a). It requires supply voltage to be connected between Vi
and GND pins for the proper operation of gates.

» TABLE 3-11

IC NO. | DESCRIPTION
7400 Cuad 2-input NAND pates
7402 Quac 2-input NOR pates.
T404 Hex inverters
7408 Quadt 2-inpot AND gates
7410 Triple 3-input NAND gates
411 Triple 3-input AND gates
420 Dual -input NAND gates
7421 Dual -input AND gates
7427 Triple 3-input NOR gares
T4 K-input NAND gate
T432 Quad 2-input OR gates
7486, 74386 Quad EX-OR gates
74133 13-input NAND gate
74135 Quad EX-OR/NOR gutes
74260 Dual S-input NOR gales

i E =

Voo Vor Ver Vg

13] [13] {73 [31] [1] [9] {5 [F%] T3] {72} {i1] [i6] 9] [¥] 3] [13]

El
=]
=
=
El
E
E

v o v v j
1= [l | [t
[EN] 3] K3 JER| EX) C3 [] [ENEE3| K1\ EDJER] C1) kD) KB} 3 EXE | EXN O3)i DT TS TTeT T
GND GHD N GMD
) 74060 i 42 Lo T4 iy 7408
Vee Ver Ver Ver
[13] [73] 73] [} (7o)] (%1 [F3] {3 {73} (73] 7@ [9] %] (73] 73] [7) [77) [0 [5] [%) [V 790 (73 [T} [0 (9 [¥

e L | LLLol] | [LLo]

I_'.II_!iI_'EIiiIiIIAi(I!%Ii] KN ENJESJERJ Y)

K3 E3 JEDJEBJ E3 LY R

() GND
el 7410 Wy iy 7420
1 (13 [T, 73 [T e [5]
| e
21 2] (2] [P
[} PRV ES B 3 3 3 313 32 e U163 3 3 3
GND GND GND
1742 (7430 k) 7432 (8 TR E350

FIGURE 1-48

Pin condiguration diagrams of some gate ICs

LOGIC GATES = 10%

Logic Symbols

The logic symbels for the gate ICs use the standard gate symbols and show the number of
gates in the IC package and the associated pin numbers for cach gate as well as the pin num-
bers for Ve and ground. An example is shown in Figure 3—49 for a hex inverter and for a
quad 2-input NAND gate. Both the distinctive shape and the rectangular outline formats are
shown, Regardless of the logic family, all devices with the same suffix are pin-compatible; in
other words, they will have the same ar of pin bers. For ple, the
T400, 74500, T4LS00, TAALSON, T4F00, TAHC00, and T4AHCOD are all pin-compatible quad
2-input NAND gate packages.

Voo
(REzY
Ll 2w ; @
Voo
™ “ [4 [|‘n.u
(&) i "
&)}
™ & (15 il 41 © 2y
4
[}" e 112 (BJ] :5, [~ (o)
. (] [
iy (1m (8} (8}
!> ¢ Rectangular outline logic symbol () {ll;lj e
1 i with polanity isdicators. The invener T 112y i
l—") >D__‘ 2 qualifying symbol {1 appears in the n an 3 1)
i block and applics to all biocks ~
below.
lm [
GNIDY GND
Distinctive shape lngic diagram
ia) Hex invener i) Qruaed 2-input NAND

AFIGURES-4%
Logic symbols for hex inverter and quad 2-input NAND gate ICs

| SECTION 3-7
REVIEW

. What it the number of 3-input NAND gates in a T4-pin IC7
What is the number of pins required in an IC package for four 2-input OR gates?
What will be the number of pins required in an |C package for a 13=input NAND gate?

Ll o

MMA

The inverter output is the complement of the input.

The AND gate oaiput is HIGH only if all the inputs are HIGH.

The OR gate output is HIGH if any of the inputs is HIGH.

The NAND gate output is LOW only if all the inpuis are HIGH.

The NAND can be viewed as a negative-OR whose output is HIGH when any input is LOW.
The NOR gate ourput is LOW if any of the inputs is HIGH,

110 = DIGITAL FUNDAMENTALS

- FIGURE 3-50

SELF-TEST

The NOR can be viewed as a negative- AND whaose ouput is HIGH only if all the inputs are LOW.,
The exclusive-OR gate output is HIGH when the inputs are not the same.
The exclusive-NOR gate output is LOW when the inputs are not the same.

Distinctive shape symbols and truth tables for various logic gates (limited to 2 inputs) are shown in
Figure 3-50.

=
[

NOR Negative-AND Exclusive-OR Exclusive-NOR
Node: Active staies are shown as unshaded

= For hasic logic functions, integ circuits are ially available in DIF.

Anvwen are at the end of the chapter.

1. When the input to an inverter is HIGH (1), the output is
() HIGH or | (b} LOWor | (e} HIGH or 0 (d) LOW or @
2, Aninverter performs an operation known as
{a) complementation (b} assertion
(e} inversion (d) both answers {a) and (c)
3. The output of an AND gate with inputs A, B, and Cis a 1 (HIGH) when
W A=1L8=1C=1 bA=LE=0C=1 R A=0B=0C=0
4. The cutpat of an OR gate with inputs A, B, and Cis a | (HIGH) when
M A=LF=1.C=1 M A=0BF=0.C=1 R A=DE=D.C=0
{d) unswers (a), (h), and (c) (e} only answers (a) and (b}
5. A pulse is applied o each input of a Zinput NAND gate. One pulse goes HIGH at 1 = 0 and goes

hack LOW at r = | ms, The other pulse goes HIGH at r = 0.8 ms and goes back LOW at t = 3 ms,
The output pulse can be deseribed as follows:

@) It goes LOW a1 7 = hand hack HIGH atr = 3 ms.

(B 1t goes LOW at 7 = 0.8 ms and back HIGH w1 = 3 ms.
fed It gocs LOW atr = (L8 ms and back HIGH atr = 1 ms.
vil) It goes LOW atr = 0,8 ms and back LOW atr = | ms,

LOGIC GATFS = 111

6. A pulse is applied o each input of a Z-input NOR gate. One pulse goes HIGH a1 = 0 and goes
hack LOW at r = | ms. The other pulse poes IIGH atr = 0.8 ms and poes back LOW a7 - 3 ms,
The output palse can be described as follows:

(@) Tt goes LOW at 1 = (hand back HIGH atr = 3 ms.

(b} It goes LOW at r = 0.8 ms and boek HIGH at s = 3 ms.

fed It goes LOW at ¢ = (.8 ms and back HIGH a1 1 = | ms,

(d) It goes HIGH a1 ¢ = 08 ms and back LOW ats = 1 ms.

A pulse is applied 1o each input uf an exclusive-OR gate, One pulse goes HIGH a1 7 = 0 and goes
back LOW ai 1 = | mis. The other pulse goes HIGH ¢ = 0.8 ms and goes back LOW a1 = 3 ms.
The ouput pilse can be described as fallows:

(@) Tt goes HIGH a1 ¢ = 0 and hack LOW ar ¢ 3
(b) It goes HIGH at ¢ = 0 and back LOW at ¢ = 0.8 ms.
ie) It goes HIGH at 1 = 1 ms and back LOW at f = 3 ms.
(d} both answers (b} and (¢h ’

For and AND gate

{a) All LOW inputs produce a HIGH ouiput

{b) Oueput is HIGH if and only if all inputs are HIGH
(€} Ourput is LOW if and only if all inputs are HIGH

(d) Output is LOW if and oaly if all inputs are LOW

=

E

9. The cutput of a gate is LOW when atleast one of its inputs is HIGH. This is tree for

{a) AND (I} NAND (e} OR id) NOR

10. The output of a gae is LOW when atlenst one of its inpats is LOW. It is true for
(a) AND by OR fch NAND id) NOR

1L The outpus of a pate is HIGH when atleast one of its inputs is LOW. It is true for
(=) XOR () NAND ich NOR d) OR

12, The output of a gate is HIGH when atleast one of its inputs is HIGH. 1t is tree for
(a) NAND thy AND ey OR id) XOR

13. The ourput of a gate is HIGH if and valy i ali its inputs are HIGH. It is true for
{a) XOR by AND ich OR 1d) NAND

14. The output of a gate is LOW if and only if all its imputs are HIGH. Itis true for
{a) AND {hy XNOR fe) NOR (d) NAND

15, The output of a gate is HIGH il and only it alf its inputs are LOW. It is true for
(a) NOR by XOR {ch NAND (d) XNOR

L6, The output of a gate is LOW if and oaly if all its inputs are LOW. It is troc for
(a) XOR {h) AND {e1 OR d) NOR

17. The output of a 2-input gate is 1 il and only if its inputs are unegqual.. 1t is toe for
() OR (b} XOR {c) XNOR id) NOR

18. The output of a 2-input gate is Oif wnd only if its inputs are wequal. It is we for
(a) XNOR (b) AND i) NOR (d) NAND

19, The output of a 2-inpat gate is Bl amd oaly 0 its inputs are equal. 1t is tre for
fa} AND) XOR {e) OR id) XNOR

20. The output of a 2-inpat gate 15 0 if and only if its inputs are equal. It is true for
{a) AND b} XOR {c) OR d) NOR

21. The most suitable gate for comparing wo bits is
(a) AND i) OR (e} NAND dy XOR

22. Which of the following gates can be used as an inverter?
fa) AND 1y OR fe} XOR {d) None of the above

112 = DIGITAL FUNDAMENTALS

23, Which of the following gates can not be used as an inverter?

() NAND (hy AND tc) NOR () XNOR
24, The maximum number of 3-input gates ina 16-pin 1C will be
{a) 2 (h) 3 fc) 4 i)y 5
PROBLE Anvwers to odd-numbered problems are at the end of the book.
E The lnverter

1. The input waveform shown in Figure 3-51 is applied to an inverter. Draw the timing diagram of the
output waveform in proper rekition to the input.

FIGURE 3-51 L, HIGH
W Low -

2. A network of cascaded inverters is shown in Figure 3-52. If a HIGH is applied to point A? determine
the logic levels at points & through F.

FIGURE 3-52

The AND Gate

3. Determine the outpat, X. for a 2-input AND gate with the input waveforms shown in Figure 3-53,
Show the proper relationship of output W inpats with a timing disgram.

FIGURE 3-53

- FIGURE 3-54 A 11
i
i

5. The input waveforms applied 1o a 3-input AN gate are as indicated in Figune 3-55. Show the
outpait wavefonn in proper celation 1o the inpats with a thming diagram

FIGURE 3-55 A

L

=D

LOGIC GATES = 111

6. The input wiveFoems applicd 1o a -input AND gate are as indicated in Figure 53=56. Show the
outpat wavelonm in proper relation to the inputs with a timing diagram.

FIGURE 3-56& I : ! : : :
1 [N 1 L H A
[[p@
i '] [N [N} I N
h ' Vo b
1 1 e [1
i (] i i 1
The OR Gate

bl

Dretermine the vatput for a Z-inpul OR gate when the input wavelomms are as in Figere 3-54 and
draw s timing diagram.

=

Repeat Problem 5 fora 3-input OR gate.

Repeat Problem 6 for a 4-input OR gate.

. For the five input waveforms in Figure 3-57, determine the outpan for a S-input AND gate and the
vutput for a S-ingut OR gate. Draw the timing diagranm,

=

IGURE 3-37

[] [T | o
R IR A
The NAND Gate

11, Fot ahe set ol input wavefopm:
timwreg diagram,

Fagure 3-58. detenmine the ousput for the gate shown and draw the

FIGURFE I

D

FIGURE 3-5% A Vi T
- i Coa B
; P
1 I R
5 i P
' ”3:}‘_1
ERE o i ©
| oy iy
[a 1 v o]

FIGURE 3-60 A |
— | i) [T
B ' i La
[] .
I ' | | I
t i

114 = DIGITAL FUNDAMENTALS

SECTION 3-5

SECTION 3-6

-ANSWERS -

14, As you have leamed, the two logic symbols shown in Figure 3-61 represent equivalent operations,

The difference between the two is strictly from a functional viewpoint, For the NAND symbol, look
for two HIGHs on the inputs to give a LOW output. For the negative-OR. look for at least one LOW
on the inputs to give a HIGH on the output. Using these two functional viewpoints, show that each
gate will produce the same output for the given inputs.

* FIGURE 3-62 A

= FIGURE 3-61 AD_X
T T T
A [-1 —r B

I
|
i
LI [O)

L

The NOR Gate
15. Repeat Problem 11 for o 2-input NOR gate.
16. Determine the output waveform in Figure 3-62 and draw the timing diagram.

» FIGURE 3-63

nm=
L

17. Repeat Problem 13 for a d-input NOR gate,
18, The NAND and e pegative-OR symbols represent equivalent operations, but they are functionally

different. For the NOR symbal, look for a1 least one HIGH on the inputs 10 give a LOW on the
output. For the negative- AND, look for two LOWS on the inputs w give a HIGH onput. Using these
twa functional points of view, show that both gates in Figure 3-63 will produce the same output for
the given inputs.

The Exclusive-OR and Exclusive-NOR Gates

19. How does an exclusive-OR gate differ from an OR gate in its logical operation?

20. Repeat Problem 11 for an exclosive-OR gate.

21, Repeat Problem 11 for an exclusive-NOR gate.

22 Determine the output of an exclusive-OR gate for the inputs shown in Figure 3-54 and draw a

timing diagram.

SECTION 3-1

SECTION REVIEWS
The Inverter

1. When the inverter input is 1, the output is 0.
2 ta)

e

(B) A negative-going pulse is on the vuput (HICH w LOW and back HIGH).

SECTION 3-2

SECTION 3-3

SECTION 3-4

SECTION 3-5

SECTION 3-6

SECTION 3-7

> TABLE 3-14

LOGIC GATES = 115

The AND Gate
1. An AND gate output is HIGH when sl inputs are HIGH,
2. An AND gate output is LOW when one or more inputs are LOW.
. Five-input AND: X = | when ABCDE = 11111, and X = 0 for all other combinations of ABCDE,

The OR Gate
1. An OR gate output is HIGH when one or more inputs are HIGH,
2. An OR gate output is LOW when all inputs are LOW,
A, Three-input OR: X = 0 when ABC = 000, and X = 1 for all other combinations of ABC.

The NAND Gate
1. A NAND output 1s LOW when all inputs are HIGH.
2. A NAND ourput is HIGH when one or more inputs are LOW,

3, NAND: active-LOW output for all HIGH inputs; negative-OR: active-HIGH output for one or more
LOW inputs. They have the same truth tables,

4. X = ABC

The NOR Gate

L. A NOR owtput is HIGH when all inputs are LOW,
2. A NOR output is LOW when one or more inputs are HIGH.

A, NOR: active-LOW owtput for one or more HIGH inputs; negative-ANDY, active-HIGH output for all
LOW inputs. They have the same truth tables.

A X=A+HB+C
The Exclusive-OR Gate and Exclusive-NOR Gates

L An XOR output is HIGH when the inputs are al opposite levels.

2. An XNOR ousput is HIGH when the inputs are at the same levels,

A Apply the bits to the XOR inputs: when the output is HIGH, the bits are different,
Examples of IC Gates

L3
214
A6

SUPPLEMENTARY PROBLEMS FOR EXAMPLES
31 The uming diagram is not affected, 31 See Table 314,

INPUTS ouTPUT INPUTS ouTPUT
ABCD ABCD
000 0 1000]
0001 (1] 1001 0
0o L] 1010 n
001 0 1011 1]
0100 0 1100 0
ooy 0 1ol 0
LR 1] 1o 0

o1 0 111 1

116 = DIGITAL FUNDAMENTALS

33 See Figure 3-64.
= FIGURE 3-64

See Figure 3-65.

e

| S —

4 FIGURE 3-65 FIGURE 3-6¢

37 See Figure 3-67.
38 See Figure 3-68.

A
| i yi
| Vi i
B [[
: bt g
! M AER
c 34 RN
v - AR
x I
= LW
4 FIGURE 3-67 ~* FIGURE 3-68
39 Sec Figure 3-69.
3-10 See Figure 3-70,
A
i 1
H .
B H ;
b [
Vol !
co :
i | [i
—_
x| LI
A FIGURE 3-89 * FIGURE 3-T0

3-11 Use a 3-input NAND gate.

312 Use a 4-input NAND gate operating as a negative-OR gate.
313 See Figore 3-71.

314 Sec Figure 3-72.

3-15 See Figure 3-73.

316 Use a 2-input NOR gate,

* FIGURE 3-71

A FIGURE 3-72

A
¥
I3
] H
=
.
c o
1
HH
USRI I B

& FIGURE 3-73

3-17 A 3-input NAND gate.

3-18 The output is always LOW. The timing diagram is a straight line.
3-19 The exclusive-OR gate will not detect simultaneous failures if both circults produce the same

outputs.
3-20 The cutputs are unaffected.

SELF

L idy i 3w 4. (e}
9. iy 10, (a) 1L by 12 o)
17, (k) 18, (a) 18, id) 20. (b)

5 fcd
13. (by
20 ¢y

Lot
4.)
22, c)

LOGIC GATES

Ty
15, (ay
P

B (b}
16. (c}
24. (b)

17

BOOLEAN ALGEBRA AND
LOGIC SIMPLIFICATION

® Apply the basic laws and rules of Boolean algebra In 1854, George Boole published a work titled An Investiga-

[T 8OOLEAN OPERATIONS AND EXPRESSIONS

tinn of the Laws of Thought, on Which Are Founded the

Apply DeMargan's thecrems to Boclean expresions Ma. atical Theories of Logic and Probabilities. It was in

Describe gate networks with Boolean expressions this publication that a “logical algebra,” known today as

. Boolean algebra, was fi lated. Boolean algebra i a con-
Evaluate Boolean exprenions venient and sy tic way of expresing and analyzing the
Simplify expresions by using the laws and rules of Boclean operation of logic circuits. Claude Shannon was the fint to
algebra apply Boole’s work to the analysis and design of logic cir-

cuits, In 1938, Shannon wrote a thesis at MIT tited A Sym-

Convert any Boolean expression Into a sum-of-products (SOP} bolic A is of Relay and Switching Circuits.

form This chapter covers the laws, rules, and theorems of
Convert any Boolean expresion into a product of-sums {POS) Boolean algebra and their application to digital circuits. You
form will lean how to define a given circuit with a Boolean

S _ i and then evaluate it operation. You will alio
Use 3 Kamaugh map to implify Boolean expreions learn how to simplify logic circuils using the methods of
Use 3 Karnaugh map to simplify truth table functions Boalean algebra and Kamaugh maps,

Utilize "don’t care” conditions to simplify logic functions
Apply Boolean algebra and the Kamaugh map method to a
mtem application

Boolean algebra is the ics of digital systems. A basic knowledge of Boolean alge-
bra is indispensable to the study and analysis of logic circuits. In the last chapter, Boolean
operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and
NOR gates were introduced. This section reviews that material and provides additional defi-
nitions and information, ’

After completing this section, you should be able o

® Define varigble ® Define literal = [dentify a sum term = Evaluate a sum term
= Identify a product term ® Evaluate a product term w Explain Boolean addition
& Explain Boolean multiplication

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Variable, complement, and literal are terms used in Boolean algebra, A variable is a sym-
bal (usually an iralic uppercase letter) used (o represent a logical quantity. Any single variable
can have a | or a 0 valve, The complement is the inverse of a variable and is indicated by a
bar over the variable (overbar). For example, the complement of the variable A is A, If A = 1,
then A = 0. If A = 0, then A = 1. The complement of the variable A is read s “not A” or
“A bar”” Sometimes a prime symbol rather than an overbar is used to denote the complement
of a variable: for le, B indi the pl of &, In this book. only the overbar is
used, A literal is a variable or the complement of a variable,

Boolean Addition

Recall from Chapter 3 tha: Boolean addition is equivalent o ihe OR operation and the hasic
rules are illustrated with their relation to the OR gate as follows;

D+0=20 O+)=1 1+0ml lelel

vilvilvijvi

In Boolean algebra, a sum term is a sum of literals. In logic circuits, a sum term is pro-
duced by an OR operation with no AND operations involved, Some examples of sum 1erms
ae A+ BA+-HBA+B+CadA+B+C+ D

A sum term 15 equal to | when one or more of the literals in the term are 1. A sum term is
equal to 0 only il each of the literals is 0.

IEXAMPI.E 4-1 B a
Determine the values of A, B, C, and D that make the sumterm A + B + C + D equal to

0.

Solution For the sum term to be 0, cach of the literals in the term must be 0. Therefore, A = 0,
B=1sothat B =0, C =0 and D= 1s0that D = 0.

A+B+C+D=0+1+0+1=0+0+0+0=0

Suppl: y Probl, D ine the values of A and B that make the sum term A + B equal to 0.

Boolean Multiplication

Also recall from Chapter 3 that B multiplication is to the AND operation
and the basic rules are illustrated with their relation to the AND gate as follows;

040=0 0+1=0 1+d=0 I=i=l
1oL

101010

1%

120 = DIGITAL FUNDAMENTALS

I EXAMPLE 4-2

Solution

Supplementary Problem

SECTION 4-1
REVIEW
Answen are at the end of

the chapter.

Equation 4-1

In Boolean algebra, a product term is the product of literals. In logic circuits, a product
term is produced by an AND operation with no OR operations involved. Some examples of
product terms are A, AB, ABC, and ABCD.,

A product term is equal to 1 only if each of the literals in the term is 1. A product term is
equal to 0 when one or more of the literals are 0.

Determine the values of A, 8, C, and D that make the product term ABCD equal to 1.

For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1,
B=0sothatB=1,C=1,and D =0sothat D = 1.

ABCD =1:D-1:0=1:1-1-1=1
Determine the values of A and B that make the product term A B equal to 1.

1. IfA = 0, what does A equal?
2. Determine the values of A, B, and C that make the sum term A + B + C equal to 0.
3. Determine the values of A, B, and C that make the product term ABC equal to 1.

" LAWS AND RULES OF BOOLEAN ALGEBRA

As in other arcas of mathematics, there are certain well-developed rules and Taws that must
be followed in order to properly apply Boolean algebra. The most important of these are
presented in this section.

Alfter completing this section, you should be able 1o

= Apply the commutative laws of addition and multiphcation @ Apply the associative laws
of addition and multiplication = Apply the distributive law ® Apply twelve basic rules
of Boolean algebra

Laws of Boolean Algebra
The basic laws of Boolean algebra—ithe commutative laws for addition and multiplication,
the associative laws for addition and multiplication, and the distributive law—are the same

as in ordinary algebra. Each of the laws is illustrated with two or three variables, but the num-
ber of variables is not limited to this.

Ci ive Laws Thec ive law of addition for two variables is writien as
A+ B=8B+4

This law states that the order in which the variables are ORed makes no difference. Remem-
ber, in Boolean algebra as applied to logic circuits, addition and the OR operation are the
same. Figure 4—1 illustrates the commutative law as applied to the OR gate and shows that it
does not matter 1o which input each variable is applied. (The symbol = means “equivalent
to.")

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 121

FIGURE 4-1
—— e | i
\+8 = BeA
L] i

The commutative law of maltiplication for two varables is

AB = BA Equation 4-2

This law that the order in which the variables are ANDed makes no difference. Figure
4=2 illustrates this law as applied to the AND gate.

FIGURE 4-2 \)
: 8
:D_ = D i
I 1

Associative Laws The associative law of addition is written as follows for three variables:

A+IB+ O =A=B+C

This law states that when ORing more than two variables, the result is the same regardless of
ihe grouping of the variables. Figure 4-3 illustrates this law as applied o 2-input OR gates.

Equation 4-3

FIGURE 4-3 .)
4’_D—.\.uhu ' A+l
" i =
mec A+Bi+<
0 IS

The assoviative law of multiplication is written @ follows for three variables:

ABC) = 1ARC Equation 4-4
This law states that it makes no difference in what order the variables are grouped when
ANDing more than two v cs. Figure d-4 illustrates this law as applied to 2-input AND
2atos,
FIGURE 4-4 N \
' weer 1l
= &
B =
Bi LAY
. c
Disteibutive Law The distribetive law is written for three variables us follows:
Equation 4-5

A+ O = A + AC
This law states that ORing two or more varisbles and then ANDing the result with a single
varable is eguivalent o ANDing the single variable with each of the two or more variables
and then ORing the products. The distributive law also expresses the process of factoring in
whick the comumen variable A is fxctored out of the product terms, for example, AR + AC =
Al Oy Fgere 425 llusirates the distributive law in terms of gate implementation,

122 = DIGITAL FUNDAMENTALS

{113

mLD—=jDJ :

X o AR+ AC

* FIGURE 4-5

X=AB+C)

Rules of Boolean Algebra
Table 4—1 lists 12 basic rules that are useful in manipulating and simplifying Boolean expres-
sions. Rules | through 9 will be viewed in terms of their application to logic gates. Rules 10
through 12 will be derived in terms of the simpler rules and the laws previously discussed.

» TABLE 4-1
—————————————— LA#D0=4 ToA A=A
ZA+l=1 8 A-A=0
3,4:0=0 % A=A
4 A-1'=4A 1. A+AB=A

1L A+AB=A+D

SA+A=A
1. (A+HA+ Q) =A +BC

6.A+A=1]

A. B € can represams 4 alsghe varisbil o & combimation of variahles

Rule 1. A + 0 = A A variable ORed with 0 is always equal to the variable, If the input
variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which
is also equal 1o A, This rule is illustrated in Figure 4-6, where the lower input is fixed at 0.

= FIGURE 4-&
e T

Rule2. A + 1 =1 A variable ORed with I is always equal to 1. A 1 on an input to an OR
gate produces a | on the output, regardless of the value of the variable on the other input. This

rule is illustrated in Figure 47, where the lower input is fixed at 1.
» FIGURE 4-7 i
A=1 1

Rule3. A -0 =0 A voniable ANDed with 0 is always equal to (. Any time one input to an
AND gate is 0, the output is 0, regardiess of the value of the variable on the other input. This

rule is illusirated in Figure 4-8, where the lower input is fixed at 0.

» FIGURE 4-8
e e A=l A=l
1 o

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Ruled. A -1 =4 A varizble ANDed with | is always equal to the vaniable. If A is 0, the
output of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs are
now 1s. This rule is shown in Figure 4-9, where the lower input is fixed at 1.

» FIGURE 3-9

Rule5. A + A=A A variuble ORed with itself is always equal 1o the variable. If A is 0,
then 0 + 0 = t; and if A is 1, then 1 + 1 = 1. This is shown in Figure 4=10, where both
inputs are the same variable.

* FIGURE 4-10

Role 6. A + A =1 A variable ORed with its complement is always equal 1o 1. If A is 0,
thenO+ 0 =0+ 1= 1LIfAisl.then 1 + 1 = I + 0 = 1. See Figure 411, where one input
is the complement of the other.

= FIGURE 4-11

{ o b A
iel A=0

X=A+d=1

Rule 7. A+ A = A A variable ANDed with itself is always equal to the variable. If A = 0,
then 00 =0;and ifA = 1, then | - 1 = 1. Figure 4-12 illustrates this rule.

A= A=
XK=
A=D A=l

N=dsgca

* FIGURE 4-12

Rule8. A-A =0 Avariable ANDed with its complement is always equal to 0. Either A or
A will always be 0: and when a 0 is applied to the input of an AND gate, the output will be 0
also, Figure 4-13 illustrates this rule,

= FIGURE 4-13

123

124 = DIGITAL FUNDAMENTALS

Rule9. A =A The double complement of a variable is always equal to the variable, If you
start with the variable A and complement (invert) it once, you get A. If you then take A and
complement (invert) it, you get A, which is the original variable. This rule is shown in Figure
4-14 using inverters.

* FIGURE 4-14

Rule 10. A + AB = A This rule can be proved by applying the distributive law, rule 2, and
rule 4 as follows:

A+ AB = A(l + B) Factoring (distributive law)

=A-1 Rule2:(1 + B)= |

=4 Ruled:A-1=A
The proof is shown in Table 4-2, which shows the truth table and the resulting logic circuit
imolificati

> TABLE 4-2

<

T

LBy b e =l o~ oL

Rulell. A+ AB=A+B Thisrule can be proved as follows:

A+AB=(A+ AB) + AB Rule 10:A = A + AR
=(AA + AB) + AB Rule 7: A = AA
=AA+AB+AA + AR Rule8: adding A4 = 0
= A+ ANA+B) Factoring
=1-{A+8B Rule6:A + A =1
=A+B Rule 4: drop the |

The proof is shown in Table 4-3, which shows the truth table and the resulting logic circuit
simplification,

* TABLE 4-3

A

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 125

Rule 12. (A + BMA + C) =A + BC This rule can be proved as follows:
(A+BNA+ C)=AA + AC+ AB + BC Distributive law
= A+ AC + AB + BC Rule 7: AA = A
=A(l + C) + AB + BC Factoring (distributive law)

=A:14AB+ BC Rule2: 1 + C=1
=A(l + B+ BC Factoring (distributive law)
=A-1+BC Rule2: 1 + B=1
=A+ BC Ruled:A-1=4

The proof is shown in Table 44, which shows the truth table and the resulting logic circuit

simplification.

¥ TABLE 4-4

B c 1 BC

o o (]] (1} o 0 (1}
(1] 0 1 0 1 (i} o (]
(1] 1 0 1 o 0 0 0
0 1 1 I 1 1 1 1
1 o (] i 1 1 o 1
1 o 3 1 1 1 o 1
1 | 0 1 1 I] 1
1 1 1 1 1 1 1 1

e T

b= T A S L A R L S b B AL et B e R

|:.EE‘\:J‘::?VN Vi 1. Apply the agociative law of addition to the expresion A + (B + € + D).

2. Apply the distributive law to the expression A(B + C + D).

[4237 DEMORGAN'S THEOREMS
DeMorgan, a mathematician who knew Boole, pmpnicd wo :tv.'nrl.‘mh that are an

important part of Boolean algebra. In ical terms, DeMorgan's th provide
mathematical verification of the equivalency of the NAND and negative-OR gates

and the equivalency of the NOR and negative-AND gates, which were discussed in
Chapter 3.
After completing this section, you should be able w

= State DeMorgan’s th = Relate DeMorgan’s th 1o the equivalency
of the NAND and negative-OR gates and to the equivalency of the NOR and negative-
AND gates = Apply DeMorgan's th to the simplification of Bool

EXpressions

126 = DIGITAL FUNDAMENTALS

One of DeMorgan’s theorems is stated as follows:

The complement of a product of variables is equal to the sum of the complements of
the variables.

Stated another way,

The complement of two or more variables ANDed is equivalent to the OR of the com-
plements of the individual variables.

The formula for expressing this theorem for two variables is
Equation 4-6 X¥=X+¥
DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements of
the variables.

Stated another way,

The complement of two or more variables ORed is equivalent to the AND of the com-
1 is of the individual variabl

The formula for expressing this theorem for two variables is

Equation 4-7 X+¥=XY
Figure 4-15 shows the gate equivalencies and truth tables for Equations 4-6 and 4-7.

FIGURE 4-15

Inputs | * Output
x v |x X+v|
X _ X . 001 1
i :D— X¥ = D— X&¥ N2 1 I
' ¥ 1ol 1
NAND Negative-OR v R o
e

X —— X -
¥ ¥

NOR Negative-AND

As stated, DeMorgan's theorems also apply to expressions in which there are more
than two variables. The followi ples illustrate the application of DeMorgan's theo-
rems to 3-variable and 4-variable expressions. :

iEXAMPLE 4= J— —
Apply DeMorgan’s tt to the expressions X1Zand X + ¥ + Z.

Solution X¥Z=X+Y+Z
X+Y+Z=X¥Z

Supplementary Problem Apply DeMorgan’s theorem to the expressioh X+ T’ +f

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

|£XAMDLE 4-4 o R
Apply DeMorgan's th 10 the expressions WXIZ and W 5 X ¢ ¥4 Z.

Solution WXYZ=W+X+Y+Z
W+X+7V+2Z=WXYzZ

Supplementary Problem Apply DeMorgan’s th to the expressi WXYZ.

Each variable in DeMorgan’s theorems as stated in Equations 4—6 and 4-7 can also repre-
sent a ination of other van . For ple, X can be equal to the term AB + C,and ¥
can be equal to the term A + BC. So if you can apply DeMorgan’s th for two variabl
as stated by XY = X + ¥ (o the expression (AR + C)iA + 80 you get the following result:

(AB + C)A + BC) = (AB + €) + (A + BC)

Notice that in the preceding result you have two terms, AB + C and A + BC, to each of

which you can again apply DeMorgan's theorem X + ¥ = XV individually, as follows:
(AE + C) + (A + BC) = (AB)C + A(BC)

Motice that you still have two terms in the expression to which DeMorgan's theorem can again

be applied. These terms ure AB and BC. A final application of DeMorgan’s theorem gives the

following result:

(AB)C + A(BC) = (A + B)C + A(B + O)

Although this result can be simplitied further by the use of Boolean rules and laws,
DeMorgan’'s theerems cannot be used any more.

Applying DeMorgan's Theorems

The following procedure illustrates the application of DeMorgan’s th and Bool
algebra to the specific expressinn

A+ BC+ DE+F)
Step 1. Identify the terms 10 which you can apply DeMorgan’s theorems, and think of

each term as a single variable, Let A + BC = X and D{E +F Fr=Y.
Step 2, Since X + ¥V = XV,

(A + BO) + (D(E + F)) = (A + BOKDIE + F))

Step 3, Use rule 9 (A = A to cancel the double bars over the left term (this is not part of
DeMorgan’s theorem).

(s. + BOWE + FY) = (A + BOND(E + F)
Stepd. Applying DeMorgan’s theorem to the second term,

{A + BOWXE + F) = (A + BOWD + (E + F)

Step 5. Use the rule 9 A= A) 1o cancel the double bars over the E 4+ F part of the term.

(A+BCOHD + E+ Fy={A+ BOXD+ E+)

127

128 = DIGITAL FUNDAMENTALS

EXAMPLE 4-5

Solution

Supplementary Problem

|mmm.: a6

Solution

Supplementary Problem

The following three examples will further illustrate how to use DeMorgan's theorems.

Apply DeMorgan's theorems to cach of the following expressions:

@ @A+TB+COb (b ABC + DEF (c) AB + CD + EF

(a) LetA + B + C= Xand D = Y. The expression (A + 8 + C)D is of the form
XY = X + Y and can be rewritten as

A+B+OD=A+B+C+D
Next, apply DeMorgan’s theorem to the term A + B + C.
A+B+fC+D=ABC+D

(b) Let ABC = X and DEF = Y. The expression ABC + DEF is of the form X + ¥ = X¥
and can be rewritten as

ABC + DEF = (ABCNDEF)
Next, apply DeMorgan's theorem to each of the terms ABC and DEF.
(ABCHDEF) = (A + B+ CXD+ E+ F)
(¢) Let AB = X, TD = ¥, and EF = Z The expression AB + CD + EF is of the form
X+ ¥+ Z=XYZand can be rewritten as
AB + CD + EF = (AB)CD)EP)
Next, apply DeMorgan's theorem to each of the lem:sﬁ, .Es,mdﬁ‘

(ABYCDYEF) = (A + BYC + D)XE + F)

Apply D 's theorems to the expression ABC + D + E.

Apply DeM; 's th 1o each

@A+H+C M A+BH+CD () (A+BCD+E+F
@@A+B+C=(A+BC=(A+BC
() (A + B) + CD = (A + B)CD = (AB)C + D) = AB(C + D)

(c) (A +BICD + E+ F = ((A + BICD)E + F) = (AR + C + D)EF

Apply DeMorgan's theorems to the expression AB(C + D)+ E.

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION =

| EXAMPLE 4-7 -
The Boolean expression for an exclusive-OR gate is AF + AB. With this as a stanting

point, use DeMorgan’s theorems and any other rules or laws that are applicable to develop

an expression for the exclusive-NOR gate.

Solution Start by comp 2
theorems as follows:

AB + AB = (ABYAB) = (A + B)A + B) = (A + BYA + B)

Next, apply the distributive law and rule & (A - A = 0).

(A+BIA+B =AA+AB+ AB+ BB = AB + AB

The final expression for the XNOR is AB + AB. Note that this expression equals | any

time both vanables are Os or both variables are 1s.

Supplementary Problem Starting with the expression for a 4-input NAND gate, use DeMorgan's theorems to

develop an expression for a 4-input negative-OR gate,

|:EE$‘:‘IE:N4-! 1. Apply DeM s b to the following ex;

[a} Asc+(5+f,\ (b) (A + B)C {:}A+54~C+Df

| BOOLEAN ANALYSIS OF LOGIC CIRCUITS

Boolean algebra provides a concise way to express the operation of a logic circuit formed by
a combination of logic gates so that the output can be determined for various combinati
of input valucs.

After completing this section, you should be able to

= [ine the Boolean expression for a combination of gates = Evaluate the logic oper-
ation of a circuit from the Boolean expression 8 Construct a truth table

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given logic circuit, begin at the left-most inputs and
work toward the final uulpu: \\nu.ng Llle axptessmm for each gate. For the example circuit in
Figure 4-16, the Bool 1 is s ined as follows:

1. The expression for thc left-most AND gate with inputs € and D is CD.

2, The output of the lefi-most AND gate is one of the inputs to the OR gate and 8 is the
other input. Therefore, the expression for the OR gate is B + €D,

3. The output of the OR gate is one of the inputs to the right-most AND gate and A is the
other input. Therefore, the expression for this AND gate is A(F + CD), which is the
final output expression for the entire circuit.

A logic circuit can always be described by a Boolean equation,

the exclusive-OR expression and then applying DeMorgan’s

129

150 = DIGITAL FUNDAMENTALS

FIGURE 4-18

ALl + CIny

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been determined, a truth table that
shows the output for all possible values of the input variables can be developed. The proce-

dure requires that you eval the Boolean ion for all possible combinations of values
for the input variables. In the case of the circuit in Figure 4-16, there are four input variables
(A, B, C, and D) and therefore, sixteen (2 = 16) combinations of values are possible. A logic
circuit can always be described by a truth table.

Evaluating the E; i To evaluate the exy ion A(B + CD), first find the values of the

variables that make the expression equal to 1, using the rules for Boolean addition and multi-
plication. In this case, the expression equals | only if A = 1 and B + CD = | because

AB+CD)y=1-1=1

Now, determine when the B + CD term equals |. The term B + CD = | if either B = 1 or CD
= 1 orif both B and CD equal | because

B+CD=1+0
B+CD=0+1
B+CD=1+1
Theterm CO = lonly if C= land D = |.
To summarize, the expression A(B + CD) = | when A = | and 8 = | regardless of the
values of Cand D or when A = | and € = | and D = | regardless of the value of B. The
expression A(B + CD) = 0 for all other value combinations of the variables.

» TABLE 4-5

Truth table for the logic circuit in e o OUTRUT
Figure 4-16 A B [D AfB + €D)

o 0 0 0 0

T e ot | 0

o i} 1 0 0

0 by 0

0F - paj i ety 0

0 1 n 1 0

o 1oy 0

1} 1 1 1 0

1 0 0 (1] n

e DA ety 0

1 o 1 0 0

| 1

I

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 131

Putting the Results in Truth Table Format The first step is to list the sixteen input variable
combinations of 1s and Os in a binary sequence as shown in Table 4-5. Next., place a 1 in the
output column for each combination of input variables that was determined in the evaluation,
Finally, place a 0 in the output column for all other combinations of input variables. These
results are shown in the truth table in Table 4-5.

I::ﬂ;:f" e 1. Replace the AND gates with OR gates and the OR gate with an AND gate in Figure

4=16 and d ine the Bool pression for the output.
2. Construct a truth table for the circuit in Question 1.

4-5 | SIMPLIFICATION USING BOOLEAN ALGEBRA

Many times, in the application of Boolean algebra, you have to reduce a particular expres-
sion to its simplest form or change its form (o o more convenient one 1o implement the
expression most efficiently, The approach taken in this section is to use the basic kiws, nles,
and theorems of Boolean algebra to manipulate and simplify an expression. This method
depends on a thorough knowledge of Boolean algebra and considerable practice 5

application, not to mention a little ingenuity and cleverness.

After completing this section, you should be able to
= Apply the laws, rules, and theorems of Boolean algebra to simplify general expressions

A simplified Boolean expression uses the fewest gates possible o implement a given
expression, Four examples follow to illustrate Boolean simplification step by step,

I EXAMPLE 4-8
Using Boolean algebra techniques, simplify this expression:

AB+ AB+C)+ 8B+ C)

Solution The following is not necessarily the only approach,

Step 1. Apply the distributive law to the second and third terms in the expression, as
follows: .

AB + AB + AC + BB + BC
Step 2. Apply rule 7 (BB = B) to the fourth term.
AR+ AR+ AC + B + BC
Step 3. Apply rule 5 (A8 + AB = AB) to the first two terms,
AB+ AC + 8 + BC

Step 4. Apply rule 10 (B + BC = B) 1o the last two terms,
AB+ AC+ B

Step 5. Apply rule 10 (AF + B = B) to the first and third terms.
B+ AC

132 = DIGITAL FUNDAMENTALS

Supplementary Problem

i —
© —

iz}

A FIGURE 4-17

At this point the expression is simplified as much as possible. Once you gain experience in i
applying Boolean algebra, you can often combine many individual steps. |

Simplify the Boolean expression AB + A(B + C) + B(B + C).

Figure 4-17 shows that the simplification pmcexs in Example 4-8 has significantly
reduced the number of logic gates required to i the expression, Part (a) shows that
five gates are required to implement the nprcsswn in its original form; however, only two
gates are needed for the simplified expression, shown in part (b). It is important to realize that
these two gate circuits are equivalent. That is, for any combination of levels on the A, B, and C
inputs, you get the same output from either circuit. In general, simplification leads to fewer
gates for the same function.

"
AB+AE+ C)+ I+) B+ AC

ib

| EXAMPLE 4-9

Simplify the following Boolean expression:
[AB(C + BD) + ABIC

Note that brackets and parentheses mean the same thing: the term inside is multiptied |
(ANDed) with the term outside. ;

Step 1. Apply the distributive law to the terms within the brackets.
(ABC + ABBD + AB)C
Step 2. Apply rule 8 (BB = 0) to the second term within the parentheses.
(ABC + A-0-D + AB)C
Step 3. Apply rule 3 (A - 0 - D =0) to the second term within the parentheses.
(ABC + 0 + AB)C

Step 4. Apply rule 1(drop the 0) within the parentheses.

{ABC + AB)C
Step 5. Apply the distributive law.

ABCC + ABC

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 133

Step 6. Apply rule 7(CC = C) to the first term.

ABC + ABC
Step 7. Factor out 5C.
BCiA + A}
Step 8. Apply nule (4 + 4 = 1),
B
Step 9. Apply rule 4 (drop the 1.
EC

Supplementary Problem Simplify the Boolean expression [ABC + BD) + ABICD.

| EXAMPLE 4-10
Simplify the following Boolean expression:

ABC + ABC + ABC + ABC + ABC
Solution Step 1. Foctor BC out of the first and last terms,

BC(A + A) + ABC + ABC + ABC

Step 2. Apply rule 6 (A + A = 1) 1o the term in parentheses, and factor AR from the second
and last werms.

BC -1 + AB(C + C) + ABC

Step 3. Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term in
parentheses,

BC 4 AB-1+ ABC
Step 4. Apply rule 4 (drop the 1) 1o the second tenm
BC + AB + ABC
Step 5, Factor # from the second and third terms,
BC + BlA + A0
Step 6. Apply rule 1H(A + AT = A + C) 1o the term in purembeses,
BEC + BiA +C)
Step 7. Use the distributive and commutative laows to get the following expression:
BC + AR + BC

Supplementary Problem Simplify the Boolean expression ABC + ABC + ABC + ABC.

134 = DIGITAL FUNDAMENTALS

| EXAMPLE 4-11
Simplify the following Boolean expression:

AB + AC + ABC
Solution Step 1. Apply DeMorgan’s theorem to the first term.
(ABXAC) + ABC
Step 2. Apply DeMorgan's theorem to each term in parentheses.
(A + BYA + C) + ABC
Step 3. Apply the distributive law to the two terms in parentheses.
AA +AC+ AB + BC + ABC
Stepd. Apply mlc?MA A) 1o the first term, and apply rule 10 [AB + ABC =
AB(1 + ©) = AB] to the third and last terms.
A+AC + AR + BC
Step 5. Apply nule 10 [4 + AC = A(l + ©) = A] 1o the first and second terms.
A+AB+ BC
Step 6. Apply rule 10 [A + AB = A(1 + B) = A] to the first and second terms.
A+BC

Supplementary Problem Simplify the Boolean expression AB + AC + ABC.

Is:c'non 4-5 o "
REVIEW 1. Simpilify the g B ¥ i

(a) A+AB + ABC {b) (A+BJC+ABC () ABC(BD + CDE) + AC
2. Implement each expression in Question 1 a5 originally stated with the appropriate logic
gates. Then implement the simplified expression, and compare the number of gate:.

. STANDARD FORMS OF BOOLEAN EXPRESSIONS

All Boolean expressions, regardless of their form, can be converted into en‘.her of lwo

dard forms: the of-products form or the product-of-sums form. Standurdlzntlon
makes the cvaluation, simplification, and imp ion of Bool much
more systematic and easier,

After completing this section, you should be able to

® [dentify a of- pressi = D ine the domain of a Boolﬁn expression
= Convert any f-p ion toa dard form @ Eval Jard
sum-of-products uprusmn in Ierms of binary values = Identify a product- of-sums
expression Comm any product-of- ion to a form = a

dard prod pressi mmmofbmnryvnlues = Convert from one

standard foﬂn 1o the other

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

The Sum-of-Products (SOP) Form

A pmduu term was defined in Section 4-1 as a term consisting of the product (Boolean

of literals (varizbles or their 1 When two or more product terms
are summcd by Boolean addition, the i ion is a f-products (SOP). Some
examples are
AB + ABC ABC + CDE + BCD AB + ABC + AC

Also, an SOP expression can contain a single-variable term, as in A + ABC + BCD. Refer to
the simplification examples in the last section, and you will sce that cach of the final expres-
sions was either a single product term or in SOP form. In an SOP expression, a single overbar
cannot extend over more than one variable; however, more than one varioble in a term can
have an overbar. For example, an SOP expression

an huve the term ABC but nat ABC.

Domain of a Bnnlmn Expression ‘The domain of a genern.l Boolean expres\vaunn is the set of

1ables ined in the expression in either pl i or 1 form. For
example, the domain of the expression Al + ABC is the set of \anablc's A, B, C and the
domain of the expression ABC + CDE + BCD is the set of variables A, B. €, D E.

Implementation of an SOP Expressi I ing an 50P ion simply requires
ORing the outputs of two or more AND gates. A product term is produced by an AND opera-
tion, and the sum (addition) of two or more product terms is produced by an OR operation.
Therefore, an SOP expression can be impl d by AND-OR logic in which the outputs of
4 number {equal to the number of product terms in the expression) of AND gates connect to
the inputs of an OR gate, as shown in Figure 4-18 for the expression AS + BCD + AC. The
output X of the OR gate equals the SOP expression.

> FIGURE 4-18 A
&

"
I XK= AR e BOD o+ AC
o
A

o —_

C sion of a G I Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra technigues,
For example, the expression A(B + CD) can be converted to SOP form by applying the
distributive law:

A(B + CD) = AB + ACD

Convent each of the following Boolean expressions to SOP form:
(@) AB+BICD+EF) (D) (A+BUB+C+D) (@ (A+8)+C

Solution (a) AB + B(CD + EF) = AB + BCD + BEF
() (A+ BB+ C+D)=AB + AC+ AD + BB + BC + BD

(D ALH +C=(ATBC=iA+ BT = AC + BC

Supplementary Problem Convert ABC + (A + BB + C + AB) to SOP form.

135

136 = DIGITAL FUNDAMENTALS

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do nat contain all
of the variables in the domain of the expression. For example, the expression
ABC + ABD + ABCD has a domain made up of the variables A, 8, C, and 0. However,
notice that the complete set of variables in the domain is not represented in the first two terms
of the expression; that is, D or D is missing from the first term and C or C is missing from the
second term.

A standard SOP expression is one in which alf the variables in the domain appear in each
pmduct temn in thc expression. For example, ABCD + ABCD + ABCD is a standand SOP

SOP exy are in g truth tables, covered in
Section 4-7, and in the Kamaogh map sumphl'mauun method, which is covered in Section
4-8. Any lard SOP i to simply as SOPF} can be converted to the

standand form using Boolean algcbra.

Converting Product Terms to Standard SOP Euch product term in an SOP expression that
does not contain all the variables in the domain can be expanded to standard form 1o include
all variables in the domain and their complements, As stated in the I'olluwins steps, @ nonstan-
dard SOP expression is converted into dard form using Boolean algebra rule 6
{A + A = 1) from Table 4-1: A variable added to its complement equals 1,

Step 1. Muliiply each nonstandard product term by a tenn made up of the sum of a miss-
ing variable and its complement. This results in two product terms, As you know,
you can multiply anything by 1 without changing its value,

Step 2. Repeat Step | untll all mulung product terms contain all v.:mahlﬁ in the domain

in cither d form. In ¥ pmduct term 1o
standard fnrm the uumbcr of pruducl terms is doubled for cach missing variable,
as Example 4-13 shows,

EXAMPLE 4-13 o T
Convert the following Boolean cxpression into standard SOP form:

Solution

Supplementary Problem

ABC + AB + ABCD
The domain of this SOP expression is A, B, C, D. Take one term at a time. The first term, !
ABC, is missing variable D or D, so multiply the first term by D + D as follows: i
ABC = ABC(D + D) = ABCD + ABCD
In this case, two standard product terms are the result.

The second tern, AB, is missing variables € or € and D or D, so first multiply the
second term by € + C as follows:

AB = AB(C + C) = ABC + ABC
The two resulling terms are missing variable D or I, so multiply both terms by D + Das
follows:
AB = ABC +ABC = ABC(D + D) + ABC(D + D)
= ABCD + ABCD + ABCD + ABCD
In this case, four standard product terms are the result.

The third 1erm, ABCD, is already in Jard form. The ! lard SOP form of
the original expression is as follows:

ABC + AB + ABCD = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Convert the expression WXY + XYZ + WXY to standard SOP form.

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Binary Representation of a Standard Product Term A standard product term is equal to 1
for only one combination of variable values. For example, the product term ABCE is equal to
lwhenA =1, B=0,C=1,D=0,as shown below, and is (0 for all other combinations of
values for the variables.

ABCD =1-0-1-0

In this case, the product term has a binary value of 1010 (decimal ten).

Remember, a product term is implemented with an AND gate whose outpat is 1 only if
each of its inputs is 1. Inverters are used to produce the complements of the variables as
required,

An SOP expression is equal to 1 only if one or more of the product terms in the

expression is equal to 1.

I EXAMPLE 4-14
Determine the binary values for which the following standard SOP expression is

equal te |:

ABCD + ABCD + ABCD
Solution The lerm ABCD s equal to [when A = 1,B=1,C=land 3 = 1.
ABCD=1-1-1-1=1
The term ABCD isequat to 1 whenA = 1, B=0.C=0,and D = 1,
ABCD = 1-0-0 1= 1-1-1-1=1
The term ABCD s equal o D when A = 0,8 =0, C=0,and I =).
ABCD=0-0-0-0=1-1-1-1=1
The SOP expression equals 1 when any or all of the three product tenms is 1.

Supplementary Problem Determine the binary values for which the following SOP expression is equal to 1

XYZ + XYZ + X¥Z + XYZ + X¥Z

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4-1 as a term consisting of the sum {Boolean addition) of
Inera]s {variables or their complements). When two or more sum terms are multiplied, the
g expression is a prod f-sums (POS). Some examples are;

(A+ B)A + B+ C)
A+B+CHNC+D+ENE+C+D)

(A + BHA + B+ OHA + O

A POS expression can contain o single-variable term, ss in AA + B+ OB+ C+ D lna
POS expression, a single overbar cannot extend over more than one variable; however, more
than one variable in 2 term can have an overbar. For example, a POS expression can have the
termA + B+ Chutnot A + B+ C.

138 = DIGITAL FUNDAMENTALS

I EXAMPLE 4-15

Solution

Impl tion of a POS Expressi Impl g a POS expression simply requi
ANDmg the outputs of two or more OR gm A sum t:rm is produced by an OR operation,
and the product of two or more sam terms is produced by an AND operation. Therefore,
u POS expression can be implemented by logic in which the outputs of a number (equal to the
number of sum terms in the expression) of OR gates connect to the inputs of an AND gate, as
Figure 4-19 shows for the expression (A + B)(B + C + DNA + C). The output X of the AND
gate equals the POS expression.

=~ FIGURE 4-1% A

&
;J X=id+ Dol + O+ DHA + O}

The Standard POS Form

So far, you have seen POS expressions Ln \l‘h]ch SOme of the sum t‘.rms do not contain all of
the variables in the domain of the

A+B+CHA+B+DHA+B+C+D)

has & domain made up of the variables A, B, C, and D. Notice that the complete sct of vari-
ables in the domain is not represented in the first two terms of the expression; that is, D or D
is missing from the first term and C or C is missing from the second term.

A standard POS expression is one in which alf the variables in the domain appear in each
sum term in the expression. For example,

MA+B+C+DNA+B+C + DA+ B +C+D}

isa lard POS ion. Any lard POS ferred 10 simply as POS)
can be converted to thﬂ: standard form using Boolean :A!gtbra.

Converting a Sum Term to Standard POS Each sum term in a POS expression that does pot
contain all the variables in the domain can be expanded to standard form to include all vari-
ables in the domain and their complements, As stated in the following steps, a nonstandard
POS expression is converted into standard form uwsing Boolean algebra rule 8 (A-A = 0)
from Table 4-1: A variable multiplied by its complement equals 0.

Step 1. Add 1o each nonstandard product term a term made up of the product of the miss-
ing variable and its complement, This results in two sum terms. As you know, you
can add 0 to anything without changing its value.

Step 2. Apply rule 12 from Table 4-1: A + BC = (A + BHA + O)

Step 3. Repeat Step | until all n:sumng sum terms contain all variables in the domain in
cither lor 1 form.

Convert the following Bool ion into dard POS form:

A+B+CHB+C+DKA+B+C+ D)

‘The domain of this POS expression is A, B, C, D. Take one term at a time. The first term,
A + B + C, is missing variable D or D, so add DD and apply rule 12 as
follows:

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 139

A+B+C=A+B+C+DD=A+B+C+D)A+B+C+D)
The second term, B + C + D, is missing variable A or A, 50 add AA and apply rule
12 as follows:

B+C+D=B+C+D+AA=A+B+C+DYA+B+C+D)

The third term, A + B + C + D, is already in standard form. The standard POS form
of the original expression is as follows:
A+B+CB+C+DA+B+C+ D)=
(A+B+C+DA+B+C+DJA+B+C+DIA+B+C+DA+B+C+D)

Supplementary Problem Convert the expression (A + BIE + C) 1o standard POS form,

Binary Representation of a Standard Sum Term A standard sum term is equal w O for only
one combination of variable values. For example, the sum term A + 8 + C + D is 0 when
A=0,8=1,C=0 and D = |, as shown below, and is | for all other combinations of
values for the variables.

A+B+C+D=0+1+0+1=0+0+0+0=0

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term is
implemented with an OR gate whose uutpu: n 0 unly nr e.u:h of its inputs is 0. Tnverters are

used to produce the compl of the |
A POS expression is equal to 0 only if one or more of the sum terms in the expression
is equal to 0.

i |EXAMPI.E 4-16
Determine the binary values of the variables for which the following standard POS expres-

sion is equal to O:
A+B+C+DA+B+C+DA+BE+C+D)
Solution ThetermA + B + C + Disequal o OwhenA = 0. B = 0,C = O, and D = 0.
A+B+C+D=0+0+0+0=10

Theterm A + B+ C + Discqualwo O whenA =0,8=1,C= Land D = 0.
A+B+C+D=0+1+1+0=0+0+0+0=0
ThetermA + B+ € + DisequalioOwhenA =1, B=1,C=l,and I = 1,
A+B+C+D=1+1+1+1=040+04+0=0

The POS expression equals 0 when any of the three sum terms equals 0.

Supplementary Problem Determine the binary values for which the following POS expression is cqual to (:
X+Y+ DX+ Y+ DX+ Y+ DX + ¥+ DX+ Y + D)

Is this a standard POS expression”

140 = DIGITAL FUNDAMENTALS

Converting 5tandard SOP to Standard POS

The blnury values uf the product terms in a given standard SOP expression are not present in
the equi d POS ion. Also, the binary values that are not represented in the
SOP expression are present in the quivalent POS exp Tt 10 convert from stan-
dard SOP to standard POS, the following steps are taken:
Step 1. Evaluate each product term in the SOP expression. That is, determine the binary
numbers that represent the product terms.

Step 2. Determine all of the binary bers not included in the evaluation in Step 1.
Step 3. Write the equivalent sum term for each binary number from Step 2 and express in
POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4-17
I Convert the following SOP ion to an equivalent POS

ABC + ABC + ABC + ABC + ABC
Solution The evaluation is as follows:
000 + 010 <+ 011 + 101 + 111

SlncethelemlhreevmnhlumMdommcflh:supmnm,themmxmnlufﬂgbt
(2") possible combinations. The SOP expressi ins five of these combi 50
the POS must contain the other three which are 001, 100, and 110. Remember, these are
the binary values that make the sum term 0. The equivalent POS expression is

A+B+0OA+B+0OA+B+0)

Supplementary Problem Verify that the SOP and POS ex ions in this ple are equi by substituting
binary values into each.
':z;:-;?vn 4-6 1. Identify each of the following expressions s SOP, jard SOP, POS, or standard POS:
(a) AB + ASD + ACD (b) (A+B+C)A +B+C)
(c) ABC + ABC (d) A{A + C)(A + B)

2. Convert each SOP expression in Question | to standard form.
3. Convert each POS expression in Question 1 to standard form.

4-7 | BOOLEAN EXPRESSIONS AND TRUTH TABLES

All standard Boolean expressions can be easily © 1 into truth table format using
binary values for each term in the expression. The truth table is a common way of present-
ing, in a concise format, the logical operation of a circuit. Also, standard SOP or POS

expy s can be determined from a truth table. You will find truth tables in data sheets and
other literature related to the operation of digital circuits.

After completing this section, you should be able 1o

» Convert a standard SOP expression into truth table format - = Conven i standard POS
expression into truth table format = Derive a standard expression from a truth table
= Properly interpret truth table data

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION =

Converting SOP Expressions to Truth Table Format

Recall from Section 4-6 that an SOP expression is equal to | only if at least one of the
product terms is equal 10 1. A truth table is simply a list of the possible combinations of
input variable values and the corresponding output values (I or (). For an expression
with a domain of two variables, there are four different combinations of those variables
(2} = 4). For an expression with a domain of three variables, there are eight different
combinations of those varables {11 = 8). For an expression with a domain of four
varisbles, there are sixteen different combinations of those variables (2* = 16), and so0 on.

The first step in constructing a truth table is to list all possible combinations of binary
values of the variables in the expression. Next, convert the SOP expression to standard form if
it is not already. Finally, place a 1 in the output column (X) for each binary value that makes
the standard SOF expression a [and place a 0 for all the remaining binary values. This
procedure is illustrated in Example 4-18.

| EXAMPLE 4-18

Solution

Develop a truth table for the standard SOP expression A BC + ABC + ABC.

There are three variables in the domain, so there are eight possible combinations of
binary values of the variables as listed in the left three columns of Table 4-6. The
binary values that make the product terms in the expressions equal to 1 are ABC: 001;
ABC: 100; andd ABC: 111, For each of these binary values, a 1 is placed in the output
column as shown in the table. For each of the remaining binary combinations, a 0 is

placed in the output column.

= TABLE 4-&
INPUTS ouTPUT
B
1]] | 1 | ABC
0 1 0 0
(1} 1 | 0
1 0 0 1 ABC
1 [t} 1 | 0
1 1 0] o
1 | 1 | ARC

PRODUCT TERM ﬂ
8

Supplementary Problem Create a truth table for the standard SOP expression ABC + ABC.

Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to 0 only if at least one of the sum terms is equal to 0.
To construct a truth table from a POS expression, list all the possible combinations of binary
values of the variables just as was done for the SOP expression. Next, convert the POS expres-
sion to standard form if it is not already. Finally, place a 0 in the output column (X) for each
binary value that makes the expression a 0 and place a 1 for all the remaining binary values.
This procedure is illustrated in Example 4-19.

142 ® DIGITAL FUNDAMENTALS

| EXAMPLE 4-19

Solution

TABLE 4-7

Determine the truth table for the following s 1 POS exy
A+B+COA+B+OA+B+OA+F+OA+B+ 0O
There are three variables in the domain and the eight possible binary values are listed in
the left three columns of Table 4-7. The binary values that make the terms in the
expression equal to Dare A + B + C: 000, A + B+ C0l0;A+ B+ C:011;
A+ B+ C105;and A + B + € 110. For each of these binary values, a 0 is placed in
the output column as shown in the table, For each of the rema binary combinations,
a | is placed in the output column.

Supplementary Problem

INPUTS

ouTPUT

e

5UM TERM

0 0 0 A+B+C) N
0 0 1
0 | 0 (A+B+0C)
|
0 1 I +B+ Ol
1 0 0 |
1 o 1 “w+5+0ll
L= .
i 1 0 A+8+0 8
1 1 1 B
: s had |

Noetice that the truth table in this example is the same as the one in Example 4-15. This
means that the SOP expression in the previous example and the POS expression in this
example are equivalent.

Develop a truth table for the following standard POS exp i

A+B+CHA+B+CHA+B+C)

D ining Standard E ions from a Truth Table

= r
To d ine the lard SOP expressi i by a truth table, list the binary values
of the input variables for which the output is I Convert each binary value to the correspon-
ding pmduct term by replacing each | with the corresponding vaniable and each 0 with the

g variable compls For ple, the binary value 1010 is converted to a
product lﬁr:n as follows:
1010 » ABCD
If you substitute, you can see that the product term 1s 1:
ABCD = 1-0-1-0= 1=1
To determine the fard POS expressi P 1 by a truth table, list the binary
values for which the output is 0. Convert each binary value 1o the corresponding sum term by
replacing each 1 with the ponding variable compl and each 0 with the correspon-
ding variable. For example, the binary value 1001 is converted 1o a sum term as follows:

1001 'A+B+C+D
Il you substitute, you can see that the sum term is Oz

A+B+C+D=T+0+0+1=0+0+0+0=0

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 143

I EXAMPLE 4-20
From the truth table in Table 4-8, d the dard SOP expression and the equiva

Tent stundard POS expression.

» TABLE 4-8
[X K
0 0 0 0 :

0 o 1 0

(] 1 o]

0 1 1 1

I 0 0 1

i 0 1 0

1 1 0 1

| 1 1 1

Solution There are four 15 in the output column and the corresponding binary values are 011, 100,
110, and 111, These binary values are converted to product terms as follows:

otl ABC
100 ABC
110 - ABC
111 » ABC

The resulting standard SOP expression for the output X is
X = ABC + ABC + ABC + ABC
For the POS expression, the output is 0 for binary values 000, 001, 010, and 101. These
binary values are converted 10 sum terms as follows:

000 rA+B+C
00l CA+BAC
010 +A+B+C
101 A+B+C
The resulting standard POS expression for the output X is

X=A+B+CA+B+CHA+ B+ OA+B+0)
Supplementary Problem By substitution of binary values, show that the SOP and the POS expressions derived in
this example are equivalent: that is, for any binary value they should either both be 1 or
hath be 0. depending on the binary value.

I:iﬂ:?\"ﬂ izl 1. If a certain Boolean expression has & domain of five variables, how many binary values

will be in its truth table?

2. In a certain truth table, the output is a 1 for the binary value 0110. Convert this binary
value to the corresponding product term wing variables W, X, Y, and Z.

3. In a certain truth table, the output is a 0 for the binary value 1100. Convert this binary
wvalue to the corresponding sum term using variables W, X, Y, and Z.

144 = DIGITAL FUNDAMENTALS

| THE KARNAUGH MAP

The Kamaugh map provides a systematic method for simplifying Boolean expressions and,
if properly used, will produce the simplest SOP or POS expression possible, known as the
minimum expression. As you have seen, the effectiveness of algebraic simplification
depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on
your ability 1o apply them. The Kamaugh map, on the other hand, basically provides a
“caokbook™ method for simplificati

After completing this section, you should be able to

= Construct a Karnaugh map for three or four variables s Determine the binary value of
each cell in a Karnaugh map = ® Determine the standard product term represented by each
cell in a Karnaugh map ® Explain cell adjacency and identify adjacent cells

A Karnaugh map is similar to a truth table because it presents all of the possible values of
input variables and the resulting output for each value. Instead of being organized into
columns and rows like a truth table, the Kamaugh map is an amay of cells in which each cell
represents a binary value of the input variables. The cells are ged in a way so that simpli-
fication of a given expression is simply a matter of properly grouping the cells. Kamaugh
maps can be used for expressions with two, three, four, and five variables, but we will discuss
only 3-variable and 4-variable situations to illustrate the principles. Section 4-11 deals with
five variables using a 32-cell Karnaugh map. Another method, which is beyond the scope of
this book, called the Quine-McClusky method can be used for higher numbers of variables.
A Kamaugh map is used to simply a Boolean expression.

The number of cells in » Kamaugh map is equal to the total number of possible input vari-
able combinations as is the number of rows in a truth table. For three variables, the number of
eells is 2' = 8. For four variables, the number of cells is 2° = 16.

The 3-Variable Karnaugh Map

‘The 3-variable Kamaugh map is an array of eight cells, as shown in Figure 4-20(a). In this
case, A, 8, and C are used for the variables although other letters could be used, Binary values
of A and B are along the left side (notice the sequence) and the values of € are across the top.
The value of a given cell is the binary values of A and B at the left in the same row combined
with the value of C at the top in the same column. For example, the cell in the upper left
comer has a binary value of 000 and the cell in the lower nght comer has a binary valoe of
101. Figure 4-20(b) shows the standard product terms that are represented by each cell in the

Karnaugh map.
= FIGURE 4-20 & o L C 0 L
A J-variable Karnaugh map A A8

(1] [CI N

ol on |

n 1]

10 | 10

[F1) by

The 4-Variable Karnaugh Map

The 4-variable Karmaugh map is an array of sixteen cells, as shown in Figure 4-21(a). Binary
values of A and B are along the left side and the values of C and D are across the top. The
value of a given cell is the binary values of A and B at the left in the same row combined with
the hinary values of C and £ at the top in the same column, For example, the cell in the upper

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION =

* FIGURE 4-21 on (&)
ABN 000 1w ABN. W 01 1 10
A dariable Kamaugh map
(L] oo
U] L1 B L i
i} 1 l
10 i 1 l
{a]}

right comer has a binary value of 0010 and the cell in the lower right comer has a binary value
of 1010. Figure 4-21(b) shows the standird product terms that are represented by each cell in
the 4-variable Kamaugh map.

Cell Adjacency

The cells in a Karmmaugh map are arranged so that there is only a single-variable change
between adjacent cells. Adjacency is defined by a single-variable change. Cells thar differ by
only one variable are adjacent. For example, in the 3-variable map the 010 cell is adjacent 10
the 000 cell, the 011 cell, and the 110 cell. Cells with vafues that differ by more than one vari-
able are not adjacent. For example, the 010 cell is not adjacent to the 001 cell, the 111 cell,
the 100 cell, or the 101 cell.

Physically, each cell is adjacent 1o the cells that are immediately next to it on any of its four
sides. A cell is not adjacent to the cells that diagonally touch any of its comers. Also, the cells
in the top row are adjacent 1o the corresponding cells in the bottom row and the cells in the
outer left column are adjacent to the corresponding cells in the outer right column. This is
called “wrap-around” adjacency because you can think of the map as wrapping around from
top to bottom to form a cylinder or from lef to right 1o form a cylinder. Figure 4-22 illustrates
the cell adjacencies with a 4-variable map, although the same rules for adjacency apply to
Kamaugh maps with any number of cells,

* FIGURE 4-22 ch

AJ‘N ool 10

wl T [T 7
. i N a 1T + -])

mf ' } T

. 4 '

NI [1 L

3) l- .

1! . + 4 '

A 4 i i

145

I iii‘:é?\!" Sl 1. In a 3-variable Kamaugh map, what is the binary value for the cell in each of the follow-

ing locations:
(a) upper left comer (b} lower right comer
(€) lower left comner (d) upper right comer

e

and 27
. Repeat Question 1 for a 4-variable map.

bW

. Repeat Question 2 for a 4-variable map wsing variables W, X, ¥, and Z,

. What is the standard product term for each cell in Question 1 for variables X, Y,

146 m DIGITAL FUNDAMENTALS

| KARNAUGH MAP SOP MINIMIZATION

As stated in the last section, the Kamaugh map is used for simplifying Boolean expressions
to their mini form. A minimized SOP exg ion contains the fewest possible terms
with the fewest possible variables per term. G Iy, & mini SOP exy ion can be
implemented with fewer logic gates than a standard expression.

After completing this section, you should be able 1o

= Map a standard SOP expression on a Kamaugh map = Combine the |5 on the map into
maximum groups ® Determine the minimum product term for each group on the map

® Combine the minimum product terms to form a minimum SOP expression. ® Convert a
truth table into a Karnaugh map for simplification of the represented expression = Use
“don’t care” conditions on a Kamaugh map

Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Kamaugh map for each
product term in the expression. Each 1 is placed in a cell comresponding to the value of a
product term. For example, for the product term ABC, a | goes in the 101 cell on a
3-variable map.

When an SOP expression is completely mapped, there will be a number of Is on the
Kamaugh map equal to the pumber of product terms in the standard SOP expression. The
cells that do not have a | are the cells for which the expression is (. Usually, when
working with SOP expression, the s are left off the map. The following steps and the
illustration in Figure 4-23 show the mapping process.

> Fl RE 4-23 [
Ficy AH o 1 ABC + ABC + ABC + ANC

w0 oo 1o 100

Step 1. Determine the binary value of each product term in the standard SOP expres-
sion. After some practice, you can usually do the evaluation of terms men-
tally,

Step 2. As each product term is evaluated, place a 1 on the Kamaugh map in the cell
having the same value as the product term.

The folowing examples will further illustrate the mapping process,

I EXAMPLE 4-21
Map the fi ing 1 SOP expres: on a Karnaugh map:

ABC + ABC + ABC + ABC

Solution The expression is evaluated as shown below. A 1 is placed on the 3-variable Kamaugh map
in Figure 4-24 for each standard product term in the expression.

ABC + ABC + ABC + ABC
0ol alo 110 111

BOOLEAN ALGEBRA AND LOGIC S5IMPLIFICATION =

* FIGURE 4-24

1

Supplementary Problem Map the standard SOP expression ABC + ABC + ABC on a Karnaugh map,

IEX&MPLE 4-22
Map the following dard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD + ARCD + ARCD + ABCD

Solutic The expression is evaluated as shown below. A 1 is placed on the 4-vaniable Kamaugh map
in Figure 4-25 for each standard product term in the expression,

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
0011 0100 1101 1111 1100 0001 1010

» FIGURE 4-25

(&l
T [Li] o 1n 10
¥
(L] - 1
il
1
' i
1 =i

Supplementary Problem Map the following standard SOP expression on a Kamaugh map:
ABCD + ABCD + ABCD + ABCD

Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a Karmaugh map. If an expres-
sion is not in standard form, then it must be converted to standard form by the procedure covered
in Section 4-6 or by numerical expansion. Since an expression should be evaluated before map-
ping anyway, numerical expansion is probably the most efficient approach.

of a Norstandard Product Term Recall that a nonstandard product
term has one ur more missing variables. For ex unple, assume that one of the product terms in

148 = DIGITAL FUNDAMENTALS

' | EXAMPLE 4-23

Solution The SOP
have three variables. The first term is missing two variables, the second term is missing
one variable, and the third term is standard. First, expand the terms numerically as follows:

Supplementary Problem

a certain 3-variable SOP expression is AB. This term can be expanded numerically to
standard form as follows. First, write the binary value of the two variables and attach a 0
for the missing variable C: 100, Next, write the binary value of the two variabies and
attach u 1 for the missing variable C: 101. The two resulting binary numbers are the
values of the standard SOP terms ABC and ABC.

As another example, assume that one of the product terms in a 3-variable expression
is f# (remember that a single variable counts as a product term in an SOP expression).
This term can be expanded ically to dard form as follows. Write the binary
valug of the variable; then attach all possible values for the missing variables A and C
as follows:

B
010
o1
110
111

The four resulting binary numbers are the values of the standard SOP terms ABC, ABC,
ABC, and ABC.

Map the following SOP expression on a Kamaugh map: A + AB + ABC.

pression is obviously not in fard form because each product term does not

A +AB +ABC
000 100 110
ool 1

00

o1

Each of the resulting binary values is mapped by placing a 1 in the appropriate cell of the
3-variable Karmnaugh map in Figure 4-26,

* FIGURE 4-2&

Map the SOP expression 8C + AC on a Karnaugh map.

IEXAH.PLE 4-24

Solution

| Supplementary Problem

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION =

Map the following SOP expression on a Karnaugh map:

BC + AB + ABC + ABCD + ABCD + ABCD
The SOP expression is ot 1y not in fard form because each product term does not
have four variables. The first and second terms are both missing two variables, the third
term is missing one variable. and the rest of the terms are standard. First, expand the terms
by including all combinations of the missing variables numerically as
follows:

BC +AB + ABC + ABCD + ABCD + ABCD
0000 1000 1100 1010 0001 1011
0oo1 1001 1101

1000 1010

1001 1011

Each of the resalting binary values is mapped by placing a 1 in the appropriate cell of the
4-variable Kamnaugh map in Figure 4-27. Notice that some of the values in the expanded
expression are redundant,

» FIGURE 4-27

cn

m

Map the expression A + CD + ACD + ABCD on a Kamaugh map.

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the fewest
possible variables is called minimization. After an SOP expression has been mapped. there
are three steps in the process of obtaining a mini SOP exg ing the 1s, deter-
mining the product term for each group, :Lnd summing the resulting product terms.
Grouping the 15 You can group 15 on the Karnaugh map according to the following rules by
enclosing those adjacent cells containing 1s, The goal is to maximize the size of the groups
and to minimize the number of groups.

1. A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the

case of a 3-variable map, 2° = § cells is the maximum group.

2. Each cell in a group must be adjacent to one or more cells in that same group, but all
cells in the group do not have to be adjacent to each other.

[

. Always include the largest possible number of Is in a group in accordance with rule 1.

. Each 1 on the map must be included in at least one group. The 1s already in a group
can be included in another group as long as the overlapping groups include non
common 1s.

149

150 = DIGITAL FUNDAMENTALS

5 Iexam’l.z 4-25 .
Group the 1s in each of the Kamaugh maps in Figure 4-28,
s
”C o1 “c 0 1 ”wm o 11 1 As“m o 11 10
o0 | (L] 1] o I 1 (1] ! |
o1 I ol o o1 1 l o 1 |
njo ! | 1 n [l :
|
10 w| 1 [10 1 1 w| i i |
)) t© i i

A FIGURE 4-28 |

Solution The groupings are shown in Figure 4-29. hmﬂmlﬁunmybemtbmmm
to group the 1s to form maximum groupings.

Wrap-anund adjacency Wrap-around

N
=
o1 i
u(
ID.
(ah
A& FIGURE 4-29
Suppl y Problem i lflhmmmbermrmmrhelmﬁmmwmmmum S |
Dy g the Minij SOP Exp ion from the Map When all the Is representing the
standard ploduct terms in an expre"slon are properly mapped and gmuped the process of
ining the resulting Sop ion begins. The following rules are applied 1o

find the minimum product terms and the m.m:mum S0P expression:

1. Group the cells that have Is. Each group of cells containing s creates one product
term composed of al! variables that occur in only one form (either uncomplemented or

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 151

complemented) within the group. Variables that occur both uncomplemented and comple-
mented within the group are eliminated. These are called contradictory variables.
2. Determine the minimum product term for each group.
a. Fora 3-variable map:
(1) A I-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2-variable product term
(3) A d-cell group yiclds a 1-variable term
) An S-cell group yields a value of 1 for the expression
b. For a 4-variable map:
(1) A l-cell group yields a 4-variable product term
(2} A 2-cell group yields a 3-variable product term
(31 A d-cell group yields a 2-variable product term
(4) An S-cell group vields a 1-variable term
(5) A l6-cell group yields a value of 1 for the expression

3. When all the minimum product terms are derived from the Karnaugh map, they are
d 1o form the mi SOP i

| EXAMPLE 4-26
Determine the product terms for the Kamaugh map in Figure 4-30 and write the resulting

minimum SOP expression.

> FIGURE 4-30

Solution In Figure 4-30, the product term for the E-cell group is B because the cells within that
group contin both A and A, C and €, and D and D, so these variables are eliminated. The
4-cell group contains B, B, D, and D, leaving the variables A and €, which form the prod-
uct term AC, The 2-cell group contains B and B, leaving variables A, C, and D which form
the product term ACD. Notice how overlapping is used to maximize the size of the groups.
The fting i SOP expression is the sum of these product terms:

B+ AC + ACD

Supplementary Problem For the Karnaugh map in Figure 4-30, add a 1 in the lower right cell (1010) and determine
the resulting SOP expression.

152 = DIGITAL FUNDAMENTALS

EXAMPLE 4-27) . S
Determine the product terms for each of the Kamaugh maps in Figure 4-31 and write the

g mini SOP exp

c H ' ¢ [=7] / (= I
4 o W,/ ol n mn

FErT ST
5D

RoncD
o M)
(B

a

| ol ﬁ:
. . m" 1 n t_‘_l} 1
o 1] @ o] -G

A FIGURE 4-31
Solution The resulting minimum product term for each group is shown in Figure 4-31. The mini-
mum SOP expressions for each of the Kamaugh maps in the figure are
{a) AB + BC+ABC (b) B+ AC + AC
() AB+AC+ABD (d) D + ABC + BC

Supplementary Problem For the Kamaugh map in Figure 4-31(d), add a 1 in the (111 cell and determine the result-
ing SOP expression.

IE)MMI'I.E4~28
Use a Kamaugh map to minimize the following dard SOP expressi

ABC + ABC + ABC + ABC + ABC

Solution The binary values of the expression are
101 + 011 + 011 + 000 + 100

The standard SOP expression is mapped and the cells are grouped as shown in
Figure 4-32.

» FIGURE 4-32

Supplementary Problem

' EXAMPLE 4-29

Solution

Supplementary Problem

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 153

Notice the “wrap around™ 4-cell group that includes the top row and the botom row of
Is. The ining 1 is absorbed in an overlapping group of two cells. The group of four 1s
produces a single variable term, B. This is determined by observing that within the group,
B is the only variable that does not change from cell to cell. The group of two Is produces
a 2-variable term AC. This is determined by observing that within the group, A and C do
not change from one cell to the next. The product term for each group is shown and the
is

Keep in mind that this mini exf ion is equi

sion.

Use a Karnaugh map to simplify the following standard SOP expression:
XYZ + XYZ + XYZ + XYZ + XYZ + XYZ

Use a Karnaugh map to minimize the foll SOP exy

BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

The first term BCD must be expanded into ABCD and ABCD to get the standard SOP
expression, which is then mapped; and the cells are grouped as shown in
Figure 4-33,

» FIGURE 4-33

I
— =
1] 1 | 1 1

[

Notice that both groups exhibit “wrap around” adjacency. The group of eight is formed
because the cells in the outer columns are adjacent. The group of four is formed 1o pick up
the remaining two Is because the top and bottom cells are adjacent. The product term for
cach group is shown and the Iing mini S0P expression is

D+ BC

Keep in mind that this minimum expression is equivalent to the original standard expres-
sion.
Use a Karnaugh map to simplify the following SOP expression:

WXYZ + WXYZ + WXYZ + WYZ + WXYZ

154 ‘= DIGITAL FUNDAMENTALS

* FIGURE 4-35

“Mapping Directly from a Truth Table

You have seen how to map a Boolean expression; now you will leam how to go directly from
a truth table to a Kamaugh map. Recall Ihat a truth table gwes the output of a Boolean expres-
sion for all possible input variable comt An iple of a Bool ion and its
truth table representation is shown in Figure 4-34, Notice in the truth table lhal the output X is
1 for four different input variable combinations. The 1s in the output column of the truth table
are mapped directly onto a Kamaugh map into the cells corresponding to the values of the
associated input variable combinations, as shown in Figure 4-34. In the figure you can see
that the Boolean expression, the truth table, and the Karnaugh map are simply different ways
to represent a logic function.

» FIGURE 4-34 XN=ABC + ABC + ARC + ARC
£
Inputs |-Output asi= 0=
el oD
L A
oo1| o o
o1o0| o
DR I @ @
1o0| 1 e
to1| o @
110] 1 4
e 1 -
O DRI Te D mag

"Don't Care” Conditions

Sometimes a situation arises in which some input varigble combinations are not allowed. For
example, recall that in the BCD code covered in Chapter 2, there are six invalid combinations:
1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states will never occur in an
application involving the BCD code, they can be treated as “don’t care” terms with respect to

Inputs | Output
ABCD Y
0000 0]
o001 0
o0l 0
ool L]
0100 0
g:?:] g MCDm ol 1 10
LUN B RS | I o
Loo0 1
1oo01 1 ol @ 8 ABCL
1010 X W acp
1011 X @ |
nffx | x o
1100] X puvicaes £ |
1110 x 0 !I 1 X x)
1111 X > - .
4 H(A
{a) Truth table (b) Without “doa’t cares” ¥ = ABC + ABCD

With “don’t cares™ ¥ = A + 8CD

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 155

their effect on the output, That is, for these “don’t care™ terms either a 1 or a 0 may be
assigned to the output; it really does not matter since they will never occur.

The “don’t care™ terms can be used to advantage on the Kamaugh map. Figure 4-35 shows
that for each “don’t care™ term, an X is placed in the cell. When grouping the 1s, the Xs can
be treated as s to make a larger grouping or as Os if they cannot be used to advantage. The
larger a group, the simpler the resulting term will be,

The truth table in Figure 4-35(a) describes a logic function that has a | output only when
the BCD code for 7, 8, or 9 is present on the inputs, If the “don’t cares™ are used as 1s, the
resulting expression for the function is A + BCD, as indicated in part (b). If the “don’t cares”
are not used as 1s, the resulting expression is ABC + ABCD. So you can see the advantage of
using “don’t care™ terms (o get the simplest expression,

I ;EE'::;?U.N 25 1. Lay out Kamaugh maps for three and four variables.

2. Group the 15 and write the simplified SOP expression for the Karnaugh map in Figure
4-24.

3. Write the original standard SOP expresions for each of the Karnaugh maps in Figure
4-31.

'4-10 KARNAUGH MAP POS MINIMIZATION

In the fast section, you studied the minimization of an SOP expression using a Kamaugh
map. In this section, we will focus on POS expressions. The approaches are much the same
except that with POS expressions, 0s rep ing the standard sum terms are placed on the
Karnaugh map instead of 1s.

After completing this section, you should be able o

= Map a standard POS expression on a Karnaugh map = Combine the 05 on the map into
maximum groups ® Determine the minimum sum term for each group on the map

= Combine the minimum sum terms o form a minimum POS expression ® Use the
Kamnaugh map to convert between POS and SOP

Mapping a Standard POS Expression

For a POS expression in standard form, a 0 is placed on the Kamaugh map for cach sum term
in the expression. Each 0 is placed in a cell corresponding 1o the value of a sum term. For
example, for the sum term A + 8 + C, a0 goes in the 010 cell on a 3-variable map.

When a POS expression is completely mapped. there will be a number of Os on the
Kamaugh map equal to the number of sum terms in the standard POS expression. The cells
that do not have a 0 are the cells for which the expression is 1. Usually, when working with
POS expressions, the Is are left off. The following steps and the illustration in Figure 4-36
show the mapping process.

Step 1. Determine the binary value of each sum term in the standard POS expression.
This is the binary value that makes the term equal to 0.

Step 2. As ecach sum term is evaluated, place a 0 on the Karnsugh map in the commespon-
ding cell.

156 = DIGITAL FUNDAMENTALS

FIGURE 4-36 (s

Example 4-30 will further illustrate the mapping process,

IEXAMPLE 4-30
Map the following 1 POS expression on a Kamangh map:

A+B+C+DIA+B+C+D)A+B+C+DWA+B+C+ DA+ B +C+D)

Solution The expression is evaluated as shown below and a 0 is placed on the 4-variable Kamangh
map in Figure 4-37 for each standard sum term in the expression.

A+B+C+DNA+B+C+DMA+B+C+D)NA+B+C+D)A+B+C+D)

110 [LH1N] ooio (R} (LI D]
~ FIGURE 4-37

o
AEN. 0 1w
o ’ -
ol
nl -
10

Supplomentary Problem Map the following Jard POS expression on 2 Kamaugh map:

A+B+C+DHA+B+C+DXA+ B+ C+DYA+B+C+ D),

Karnaugh Map Simplification of POS Expressions

The process for minimizing & POS expression is basically the same as for an SOP expression
except that you group s 1o produce minimum sum terms instead of grouping |s to produce
minimum product terms. The rules for grouping the Os are the sume as those for grouping the
Is that you leamed in Section 4-9.

I EXAMPLE 4-31

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 157

Use a Kamaugh map to minimize the ing standard POS exg

A+B+CHA+B+OA+B+CA+B+ DA+ B+ O

Solution The combinations of binary values of the expression are

Supplementary Problem

|EXAMPI.E 4-32

Solution

O+C+MO+0+ DO+ T+0H0+ 1+ N1+ 1+0)

The standard POS expression is mapped and the cells are grouped as shown in Figure
4-38.

» FIGURE 4-38 c
AN 0

w fu_ﬂ
[
v,

1_1

Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the 0 in the
4-cell group. The sum term for each blue group is shown in the figure and the resulting
minimum POS expression is

AB+ 0
Keep in mind that this mini POS expression is equi

expression,
Grouping the 15 as shown by the gray areas yields an SOP expression that is equivalent

to grouping the Os.

lent to the original standard POS

AC+AB = AB + C)

Use a Kamaugh map to simplify the following lard POS exg
X+F+ DX+ P+ DX+ T+ DX+ Y+ 2)

Use a Kamaugh map to minimize the following POS exp
B+C+DWA+B+C+DA+B+C+DHA+B+C+DIA+B+C+D)

The first term must be expanded into A + 8 + € + Dand A + B+ C + Diogeta
standard POS expression, which is then mapped; and the cells are grouped as shown in

158 = DIGITAL FUNDAMENTALS

Supplementary Problem

| EXAMPLE 4-33

Solution

Figure 4-39. The sum term for each group is shown and the resulting minimum POS
expression is
(C+DHA+B+DHA+B+C)

Keep in mind that this mini POS ion is equivalent to the original standard POS
expression.
= FIGURE 4-3%
o A II'J LE
AN o 10/
7o 1
L] 1]
I al
arfy o
LININ - B S S RIN]
w|(0]

Use a Kamaugh map to simplify the following POS expression:
W+ X+ Y+ W+ X+ VY + W+ X+ F+ W+ X+ D)

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression is mapped, it can easily be converted to the equivalent SOP form
directly from the Kamaugh map. Also, given a mapped SOP expression, an equivalent POS
expression can be derived directly from the map. This provides a good way 1o compare both
minimum forms of an expression to determine if one of them can be implemented with fewer
gates than the other.

For a POS expression, all the cells that do not contain Os contain 1s, from which the SOP
expression is derived. Likewise, for an SOP expression, all the cells that do not contain 1s

contain 0s, from which the POS ex| ion is derived. E le 4-33 il this
conversion.

Using a Kamaugh map, convert the following lard POS ion into a

POS exg a standard SOP expression, and a mini S0P expressi

A+B+CE+DA+B+C+DA+B+C+D) |
A+B+C+DNA+B+C+DJA+B+C+D) |

The 0s for the standard POS expression are mapped and grouped to obtain the minimum
POS expression in Figure 4-40(a). In Figure 4-40(b), 1s are added to the celis that do not
contain 0s, From each cell containing a 1, a standard product term is obtained as indicated.
These product terms form the smdan.l sop I:erwssmn In Figure 4—4((c), the 1s are
grouped and a mini Sop is

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION =

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD

| o

| ABN_ W0 0L 10
|

I w| “Jolo|oe
| -

| ol o | . ;
|

| nilo 1 -
| i \

|

| 10 1 -
| — - -

' b i an

| (a) Minimum POS: (4 + B+ OB + C+ DNB + C+ D) 1b) Standard SOP:

() Minimum SOP: AC + BC + BD + BCD

4 FIGURE 4-40

159

| Supplementary Problem Use a Kamaugh map to convert the ing ion to mini SOP form:

WX+ P+ DWW+ X+ T+ DWW+ X+ F+DIW+ X+ D)

BT o 1 whatuth i i oping P o S0P e

2. What is the standard sum term for a 0 in cell 10117
3. What is the standard product term for a 1 in cell 00107

FIVE-VARIABLE KARNAUGH MAPS

Boolean functions with five variables can be simplified using a 32-cell Kamaugh map.
Actually, two 4-variable maps (16 cells each) are used to construct a 5-variable map. You
already know the cell adjacencies within each of the 4-variable maps and how to form groups
of cells containing 1s to simplify an SOP expression. All vou need to leam for five variables
is the cell adjacencies between the two 4-variable mnaps and how to group those adjacent 15.

160 = DIGITAL FUNDAMENTALS

Alter completing this section, you should be able to

® Determine cell adjacencies in a S-variable map ® Form maximum cell groupings in a
S-variable map ® Minimize 5-variable Boolean expressions using the Kamaugh map

A Karnaugh map for five variables (ABCDE) can be 1 using two 4-variable maps
with which you are already familiar. Each map contains 16 cells with all combinations of
variables B, C, D, and E, One map is for A = 0 and the other is for A = 1, as shown in

Figure 4-41.

DE DE

BN 0L 11 PN I N U

00 0

0 ol

1] "

n 1

A=0D A=1 -

A FIGURE 4-41
Cell Adjacencies

You already know how o determine adjacent cells within the 4-variable map. The best way to
visualize cell adjacencies between the two 16-cell maps is to imagine that the A = 0 map is
placed on top of the A = 1 map. Each cell in the A = 0 map is adjacent to the cell directly
below it in the A = | map.

To illustrate, an example with four groups is shown in Figure 4-42 with the maps in a
3-dimensional arrangement. The 1s in the yellow cells form an 8-bit group (four in the
A = 0 map combined with four in the A = | map). The Is in the orange cells form a 4-bit
group. The 1s in the light red cells form a 4-bit group only in the A = 0 map. The | in the
gray cell in the A = 1 map is grouped with the 1 in the lower right light red cell in the
A = 0 map 1o form a 2-bit group.

» FIGURE 4-42

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 161

The Simplified Boolean Expression

The original SOP Boolean expression that is ploted on the Kamaugh map in Figure 432
contains seventeen S-variable terms because there are seventeen 1s on the map. As you know,
only the variables that do not change within a group remain in the expression for that group.
The simplified expression taken from the map is developed as follows:

w The term for the yellow group is DE.

= The term for the orange group is BCE.

= The term for the light red group is ABD.

= The term for the gray cell grouped with the red cell is BCDE.

Combining these terms into the simplified SOP expression yields
X = DE + BCE + ABD + BCDE

|EMMPLEG—34
Use a Karnaugh map to minimize the following dard SOP 5-variable expression:

X = ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE
+ ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE

Solution The SOP expression is mapped in Figure 443 and the groupings and their ¢ ponding
terms are indicated. Combining the terms yields the following minimized SOP

X + ADE + BCD + BCE + ACDE

» FIGURE 4-43

P L o T (]
00 wl|(1 1)
ol 1 o f I AR el

Al

Supplementary Problem Minimize the following exp
¥ = ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + AHCDE

+ ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE

SECTION 4-11
! Lmﬂ, 1. Why does a S-variable Karnaugh map require 32 cells?

2. What is the expression represented by a S-variable Kamaugh map in which each cell
contains a 17

162 ® DIGITAL FUNDAMENTALS

UMMARY

> FIGURE 4-44

= FIGURE 4-45

= (ate symbols and Boolean expressions for the outputs of an inverter and 2-input gates are shown in
Figure 44

- A A 4 + A
Doi (D 4D S (D

® Commutative laws: A+ B=F+ A

Al = BA
® Associative laws: A+ B+ O =A+8)+C
ABC) = (AB)C
® Distributive law: A8 + C) = AB + AC
® Booleanrules: 1. A+ 0 =4 T.AA=4A
LA+l=1 A A=0
3L A-D=0 9. A=4
4 A-1=4 10 A+AB=A
S A+A=A 1. A+AB=A+E
6 A+A=1 12 (A + BYA + €)= A + BC
= DeMorgan's theorems:

1. The complement of a product is equal to the sum of the complements of the terms in the product,
X¥=X+¥
2, The complement of a sum is equal to the product of the complements of the terms in the sum.

X+¥=XY

Kamnaugh maps for 3 and 4 variables are shown in Figure 4-45, A S-variable map is formed from
wo d-variable maps.

AB ¢ o 1 A = 00 ol " 0
[o :
ol ol]
n " i
I mn
Fvanahle Aovariahle

SELF- Anvwers are at the end of the chapter,

1. The complement of a variable is always
w0 b1 (e} equal to the variable (d) the inverse of the variable
2. The Beolean expression A + B+Cis
(ad asumterm (b) alieralterm () aproductterm {d) a complemented term

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 143

3. The Boolean expression ABCH is
(@) asumterm (b) aproductierm {c) aliteralterm (d) always 1

4. 'The domain of the expression ABCD + AB + CD + Bis
{a} Aand D th) & oaly {c) A, B. C.and [{d) none of these
According to the commuative law of addition,
(a) AB = BA M A=A+4
WA+ B+O=A+B+C WA+ B=8+A
6. According to the associanive law of multiplication,

@ B=BE () ABO)=(ABC () A+B=8+A (d) B+BIBE+0)
. According to the distributive Law,

{a) AiF+ C) = AR+ AC {b) A(BC) = ABC) AA+ 1) =A (d) A+ AB =4
8. Which one of the following is nos o valid rule of Boolean alpebra?

n

=

wpA+1=1 A=A i) AA=A i A+0=4

9. Which of the following rules states that if one input of an AND gate is always 1, the outpan is equal
o the other input?

WA+1=1 MA+A=A4 (A-A=4 (@MA-1=4

10. According to D s the following equality(s) are comect:

@) AB=A+B W XIZ=X+¥+Z

(© A+B+C=ABC (d) all of these

11. The Boolean X=AB+CD

{a) two ORs ANDed together (b)) a 4-input AND pate
(e} two ANDs ORed together (d} an exclusive-OR
12 An example of o sum-of-procucts expression is
a) A + BIC+ D}) AB + AC + ABC
(@ {A+B+CHA+B+ 0 (d) both answers (a) and (b)
13, An example of a product-of-sums expression is
@) A(B+C)+AC (b} (A+ BA+B+C)
©) A+B+BC {d) both answers (a) and (b)
14. An example of 2 standard SOP expression is
(@) AB + ABC + ABD (b} ABC + ACD
(c) AB + AB + AB (d) ABCD + AB -+ A
15, A 3-variable Kamaugh map has
{a) cighteells (h) threecells (c) sixteen cells (d) four cells
16. Tn a4-varizble Kamaugh map, a 2-varizble product term is produced by
{a) a2cellgroupof Is (b} an 8-cell group of 1s
{e} ad-cell group of Is td) adcell group of (s
17. On a Kamaugh map, grouping the s produces
{a) a product-of. i (b) a f-product i
{c) a*don’t care” condilion (d) AKD-OR logic
18. A S-variable Kamaugh map has
(@) sisteencells (b} thinty-twocells () sixty-four cells

SECTIOM 4-1 Boob 0 ions and Expressi

+ Using Boolean notation, write an expression that is a | whenever one or more of its varishles (A, B,
C, and) are 1s.

164 = DIGITAL FUNDAMENTALS

2. Write an expression that is a 1 only if all of its variables (A, B, C, £, and E) are 1s,
3. Write an expression that is a 1 when one or more of its variables (4, B, and) are Os.
4. Evaluatc the following operations:
@0+0+1 (M1+1+1 () 1-0:0
)y 1-1-1 (e 1-0-1 mr-1+0-1-1
5. Find the values of the variables that make each product term | and each sum term 0.
(a) AR) ABC (O A+B (@ A+B+C
(@A+B+C (HA+B (g ABC
6. Find the value of X for all possible values of the variables.
) X={A+BC+E (b) X = (A + B)IC (e} X = ABC + AR
@ X=(A+BA+E () X=(4+8NE+O)

SECTION 4-2 Laws and Rules of Boolean Algebra

7. dentify the law of Boolean algebra upon which each of the following equalities is based:
(8) AB + CD + ACD + B= B + AB + ACD + CD
(b) ABCD + ABC = DCBA + CBA
{c) ABICD + EF + GH) = ABCD + ABEF + ABGH

B. Identify the Boolean rule(s) on which each of the following equalities is hased:
(@) AB+CD+EF=AR+ CD+EF (b) AAR + ABC + ABB = ABC
(c) A(BC + BC) + AC = ABO) + AC (d) AB(C + C) + AC = AB + AC
(e) AB + ABC = AB (f) ABC + AD + ABCD = ABC + AE+ D

SECTION 4-3 DeMorgan's Theorems
9. Apply DeMorgan's theorems to cach expression:

@ A+E (b) AB @AFTEFC @) ABC

(@) B+ 0 (HAB+CD () AR+ CD (h) (A + BIC + D)
10, Apply D gan’s o each exp

ta) ABIC + D) (b) ABCD + EF)

@ @W+B+C+D)+ABCD (d) (A + B + € + DNABCD)
(&) ABCD + EPAB + T

11, Apply Dy s 10 the fallowing
(8) (ABCKEFG) + (HIIKLM) (B) (A + BC + CD) + BC
{©) (A + BXC + DNE + FXG + H

SECTION 4-4 Boolean Analysis of Logic Circuits
12. Write the Boolean expression for each of the logic gates in Figure 4-436,

» FIGURE 4-44 A) A i A)
X A X X i X
B €
) b} i}

fal il (e (L]

* FIGURE 4-47

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION ® 165

13, Write the Boolean expression for each of the logic circuits in Figure 4-47,

SECTION 4-5

SECTIOM 4-6

Thme
-
=

(5] il
A
¥
¥

] o

wr wh

14, Dvaw the logic circuit rep | by each of the following exp
(a) A+ B+C ih) ABC ic) AR+ C id) AR + CD

L%, Draw the logic circuit represented by each expression:
(a) AB + AB (b} AB + AB + ABC
(e} ABC + D) {d) A + BIC + D(B + O)]
16, Construct i truth table for each of the following Boolean expressions:
(@) A+ 8B b} AR fc) AR + BC
(d) (A + BT (e) (A + BUE + O)

Simplification Using Boolean Algebra
17. Using Boolcan algebra techni simplify the fullowing eapressions as much as possible:
(@) AlA + B) (h) AfA + AR) (c) BC + BC

) AA + AB) (e} ABC + ABC + ABC
18, Using Boolean algebra, siraplify the following expressions:
(8) (A + BXA + €} (b) AB + AHC + ABCD + ABCDE
(e} AB + ABC + A (d) (A + ANAR + ABC)
(e} AB +id + BIC + A
19. Using Boolean algebsa, simplify each expression:
(@) BD+BD+ E)+ XD+ F) (b) ABC+ (A + B~ C) + ABCD
(c) (B + BOKB + BCKB + D) i} ABCD + ABICD) + (ABYCD
(e} ABCIAB + CBC + AC)|
20. Determine which of the logic circuits in Figure 448 arc equivalent.

Standard Forms of Boolean Exp
21. Conven the following expressions 1o sum-of-product (SOP) forms:

(w) (A + B)C + By b} (A + BOW e} (A + CHAR + AC)
22. Convert the following expressions to sum-of-product (SOP) forms:

(a) AR + CINAB + CIY (b) AREC + BD) {e) A + BAC + (B + C)D]

23, Define the domain of each SOP expression in Problem 21 and convert the expression 1o standand

S0P form.

166 = DIGITAL FUNDAMENTALS

= FIGURE 4-48

(a) (k)
«
le A
R X ”
: X
4 4
B O
i

(5] i)

24, Convert each SOP expression in Problem 22 o standard SOP form.

25, Determine the binary value of each term in the standard SOP expressions from Problem 23,
26. Determine the binary value of each term in the standard SOP expressions from Problem 24.
27. Conven each standard SOP expression in Problem 23 o standard POS form,

28. Conven cach standard SOP expression in Problem 24 to standard POS form.

SECTION 4-7 Boolean Expressions and Truth Tables

29. Develop a truth table for each of the ing standard SOP exp
(a) ABC + ABC + ABC (b} XYZ + X¥Z + XVZ + X¥Z + X¥Z
30. Develop a truth table for each of the ing standard SOP Z

(8) ABCD + ABCD + ABCD + ABCD
(b) WXYZ + WXY¥Z + WXYZ + WXYZ + WXYZ
31. Develop a truth table for each of the SOP expressions:
(a) AB + ABC + AC + ABC (b) X + YZ + WZ + X¥Z
32, Develop a truth table for each of the standard POS expressions:
WEA+B+OA+B+ A+ B+ O
M A+B+C+DHA+B+C+ DA+ B+T+DKA+B+C+ Dy
3. Develop a truth table for each of the standard POS expressions:
(@ (A+BHA+ CHA+ B+)
by A+ BYA+B+ OB+ C+ DA+ B+C+ D)
M. For each truth table in Figure 4-49, derive a standard SOF and 2 standard POS expression.

SECTION 4-38 The Kamnaugh Map

35, Draw a 3-variable Kamaugh map and label each cell according to its binary valoe.
36, Draw a 4-variable Kamaugh map and label each cell according to its binary value.
37, Write the standard problem term for each cell in a 3-variable Kamaugh map.

SECTION 4-9 K igh MAP SOP Minimizat

38. Use a Kamaugh map to find the minimum SOF form for each expression:

(a) ABC + ABC + ABC (B) AC(B + O)
(€) ARC + BO) + A(BC + BO) (d) ABC + ARC + ABC + ARC

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 147

* FIGURE 4-49%

0000 |1 0ooo | o
001§ 1 wool | o
anio | o LULCR N |
o111 ooil|o
0100 | 0 0100 | 1
0101} 1 o010l |1
orLo 1 0110 {0
01Li | o oL
aoo |0 1000 | o 1080 § 0
ooL |1 1001 |1 Lool
01e |0 1010 § 0 1010 § 0
0Ll |0 10110 1011 11
oo 1 11001 oG i
LR | oo 1101 § 0
oo 1110 §0 111040
L5 I | trinio LR B 8
(a) by 5] [

39, Use a Kamaugh map to simplify cach expression to a minimum SOP form:
(a) ABC + ABC + ABC + ABC (b) ACIB + BB + O]
(¢) DEF + DEF + DEF
40. Expand each expression to a standard SOP form:
(a) AB + ABC + ABC (b) A+ BC
(€) ABCD + ACD + BCD + ABCD (d) AB + ABCD + CD + BCD + ABCD
41. Minimize each expression in Problem 40 with a Kamaugh map.
42. Use a Kamaugh map duce each ion 10 a mini SOP form:
(w) A+ BC + €D
(b) ABCD + ABCD + ABCD + ABCD
() AB(CD + €D) + AB(CD + CD) + ABCD
(d) (AB + ABXCD + CD)
€) AB + AB + CD + €D
43, Reduce the function specified in the truth table in Figure 4-50 (o its minimum SOP form by using a
Karnaugh map.

* FIGURE 4-50

Tnputs | Output

ABC X
o000 1
001 1
01o o
011 1
100 1
101 1
11 0 (i}
P e S 1

168 = DIGITAL FUNDAMENTALS

44. Usc the Kamaugh mup method to impl the mini S0P ion for the logic function
ap:lfulmlh:wlhub]cm["gmc-i-sl

= FIGURE 4-51

inputs | Output i}
asco| x [
oooo| o
0001 1
a0 1o 1
o011 1| o
o1o00| o H
o101 o
s g i
0111 I |
1 0oo ! |
1001 o i
1ot o| 1
L A H
T
Vi | e (o fE
TR =08 |90 !
T T i

45, Solve Problem 44 for a situation in which the last six binary combinations are not allowed.

SECTION 4-10 K igh Map POS Minimizati

46, Use a Karnaugh map to find the minimum POS for each expression:
@A+B+CHA+B+OHA+B+ O
B X+ DX+ ZHX+ T+ X+ ¥+ D)
i) A(B+ CHA + CHA+ B+ CHA + B+ ©)

47, Use a Karnaugh map 1o simplify each expression to minimum POS form:
W A+B+C+DYA+ B+ T+ DA+ F+CT+D)
B X+TAW+DE+ T+ DW+X+ Y+ 2)

48, For the function specified in the truth table of Figure 4-50, d ine the mini POS exp
using a Kaﬂ'laugll l!up

49. Dx inc the POS i l'or the [unmon in the truth table of Figare 4-51.

50. Convert cach of the following POS o sop ions using a Kamaugh
map;

(@) (A + BYA + C)A + B+ ©)
M) (A+BHA+B+CHB+ C+DNA+ B+ C+ D)

SECTION 4-11 Five-Variable Kamaugh Maps
51. Minimize the following SOP A b i

X = ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE
+ ABCDE + ABCDE + ABCDE + ABCDE
52. Apply the Kamaugh map method to minimize the ing SOP
A = VIWXYZ + VIWXYZ + VWXYZ + VWXYZ + VWXYZ + F’W.??i"
+ VWXYZ + VWXYZ + VWKYZ

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION = 169

VE

SECTION REVIEWS
SECTION 4-1 Book [+] ions and Exp b

l.A=D=1 2 A=lLB=LC=GA+B+C=1+T+0=0+0+0=0
LA=1LB=0,C=LABC=1-D-1=1-1-1=1

SECTION 4-2 Laws and Rules of Boolean Algebra
LA+B+C+Di=iA+B8+00+D L AMB+C+D)=AB+AC + AD

SECTION 4-3 DeMorgan's Thecrems
Lim ABC+(D+E1=A+B+C+DE b)) A -BC=AB+€

€A+B+C+ C+D+E

SECTION 4 4 Boolean Analysis of Logic Circuits
LoAC+ INE+ A

2. Abbreviated wuth wble: The expression is a | when A is [or when 8 and C ure 1s or when B and DY
are |5, The expression is 0 for all other variable combinations.

SECTION 4-5 Simplification Using Boolean Algebra
Lia) A+ AR+ ABC = A b) (A + BIC + ABC = C(A + B)
(€} ABCIBD + CDE) + AC = A(C + BDE)
2, (a) Original: 2 AND gates, | OR gate, | inverter; Simplified: No gates (siralght connection)
(b} Original; 2 OR gates, 2 AND gates, | inverter; Simplified: 1 OR gate, 1 AND gate, 1 inverter
{©) Original: 5 AND pates, 2 OR gates, 2 inveniers; Simplified: 2 AND gates, 1 OR gate,
2 inverters
SECTION 4-4 Standard Forms of Boolean Expressions
L (@} S0OP (b)sandard POS (c} standard SOF (d) POS
2. (a) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
(c) Already standard
3. (b) Already standard
WA+E+ O+ B+ A+ B+ A+ B+ O

SECTION 4-7 Boolean Expressions and Truth Tables
L2=32 2010—WXIZ 3 HO—W+X+¥+2

SECTION 4-2 The Kamaugh Map
L (@) upperleftcell: 000 (b) lowerrightcell: 101 {c) lower left cell: 100
(d) upper right cefl: 001

2. (a) upper left cell: (b) lower right cell: XYZ () lower Jeft cell: XYZ
id) upper right cell: X ¥z

3 (a) upper leftcell: 0000 (b} lower right cell: 1010 {c) lower lefi cell: 1000
(d} upper right cell: (010

4. (a) upper leftcell: WX¥Z (b} lower right cell: WXYZ (¢ lower left cell: WXYZ
(d} upper right cell: WXYZ

170 =

DIGITAL FUNDAMENTALS

SECTION 4-9

SECTION 4-10

SECTION 4-11

» gh Map SOP Minimizati
1. B-cell map for 3 variables: 16-cell map for 4 variables
2. AB + BC + ABC
3, (a) ABC + ABC + ABC + ABC
(b) ABC + ABC + ABC + ABC + ABC + ABC
it) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
td) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD

Kamaugh Map POS Minimization

1. In mapping a POS expression, Os are placed in cells whose value makes the standard sum term zero;
and in mapping an SOP expression |5 are placed in cells having the same values as the product
terms,

2 Dinthe (01l cell: A + B+ C+ D 3. Linthe 0010 cell: ABCD

Five-Variable Kamaugh Maps
L. There arc 32 combinations of 5 variables (2° = 32),
2. X = | because the function is 1 for all possible combinations of 5 variables.

SUPPLEMENTARY PROBLEMS FOR EXAMPLES

1 A+B=0whenA = land B = 0,

42 AF=lwhenA=0and B =0, 43 X¥Z
F4WHXN+Y+Z 45 ABCDE 46 (A + B+ CDIE
4T ABCD=A+B+C+D 4BAB 49CD
4-10 ABC + AC + AB

&1l A+B+C 412 ABC + AB + AC + AB + BC
4-13 WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXYZ
4-14 011, 101, 110,010, 111. Yes

S5 A+BHONA+ B+ CHA+ B+ QA+ B+ ©)
416 010, 100, 000, 111, 011, Yes 4=17 S0P and muw;mmqﬂhﬂlm
418 See Tuble 4-9. 419 See Table 4-10.

¥ TABLE 4-9 ¥ TABLE 4-10

s L]

[} 0 0 0 E 0 0 0 1

0 0 I 0 E 0 0 1 0

0 | 0 el | 0 1 0 0

0 1 1 0 | 0 1 I I

1 0 0 o 8 1 0 0 1

1 0 1 (= | 1 0 1 i |

1 1 0 (08 | 1 1 0 1R

1 1 1 o i 1 I I 0
S =i

4-20 The SOP and POS expressions are equivalent. 421 See Figure 4-52.
4-22 See Figure 4-53. 4=23 See Figure 454, 4=24 See Figure 4-55.

A FIGURE 4-52

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

ci C o .
ARN, B0 0L 1w AL 01 AR, W w1 1w
(L1} (L1} iLt]
[} LU} ol
uf ot n 1
10 10 i

4 FIGURE 4-53 & FIGURE 4-54 A FIGURE 4-55

4-25 Nootherways 4-26 X = B + AC + ACD + €D
427 X =D+ ARC + BC + AB

428 Q- X4Y 429 0= XVZ+ WXZ + WIZ

42 P=(X+ X+ X+ V4 D)

AR P=N+T+ W+ X+ DWW+ X+ P+ ZAW + X + ¥+ 2)
433 0 =FZ+ XZ+ W+ X2

&M Y= DE + AE + BCE

4-30 Sec Figure 4-56.

o

P L e
L]
m
1
n
+ FIGURE 4-56
SEL
1 dy 2 i) LA (] 4. ic) 5 {dy 6. (b} 7. (a) R (B
9, (d) 10, id) 1leric) 12, {by 13 il M. (c) 15, (a) 16, (c)
17 (a) 18

CoOMBINATIONAL LOGIC

CHAPTER OBJECTIVES

Analyze basic combinational logic circuits, such ai AND-OR,
AND-OR-=lnvert, exclusive-OR, exclusive=NOR, and other
general combinational networks

Use AND-OR and AND-OR-Invert circuits to implement sum-
of-products (SOP) and product-of-sums (POS) expressions
Write the Boolean cutput expresiion for any combinational
logic circuit

Develop a truth table from the output expression for a combi-
national logie circuit

Use the Kamaugh map to expand an output expresion con-
taining terms with miming variables into a full SOP form

Design a combinational logic circuit for a given Boolean output
expresion

Design a combinational logic circuit for a given truth table

Simplify a combinational logic circuit to its minimum form

= Use NAND gates to implement any combinational logic func-
tion

= Use NOR gates to implement any combinational logic function

INTRODUCTION

In Chapters 3 and 4, logic gates were discusied on an indi-
wvidual basis and in simple combinations. You were intro-
duced to SOP and POS implementations, which are basic
forms of combinational logic. When logic gates are con-
nected together to preduce a specified output for certain
specified combinations of input variables, with no storage
involved, the resulting circuit is in the category of combi-
jonal logic. In c | logic, the output level is
at all times dependent on the combination of input levels.
This chapter expands on the material introduced in earlier
chapters with a coverage of the analysis, design, and trou-
bleshooting of various combinational logic circuits.

BASIC COMBINATIONAL LOGIC CIRCUITS

In Chapter 4, you learned that SOP expressions are implemented with an AND gate for each

product term and one OR gate for s

ng all of the product terms. This SOP implementa-

tion is called AND-OR logic and i3 the basic form for realizing standard Boolean functions.
In this section, the AND-OR and the AND-OR-Invert are examined; and the exclusive-OR
and exclusive-NOR gates, which are actually a form of AND-OR logic, are also covered.

After completing this section, you should be able to

= Analyze and apply AND-OR circuits
= Analyze and apply exclusive-OR gates

® Analyze and apply AND-OR-Invert circuits
= Analyze and apply exclusive-NOR gates

COMBINATIONAL LOGIC & 173

AND-OR Logic

Figure 5-1(a) shows an AND-OR circuit consisting of two 2-input AND gates and one 2-input
OR gate; Figure 5-1(b) is the ANSI standard rectangular outline symbol. The Boolean expres-
sions for the AND gate outputs and the resulting SOP expression for the output X are shown
on the diagram. In general, and AND-OR circuit can have any number of AND gates each
with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 5-1. The intermediate
AND gate outputs (the AB and CD columns) are also shown in the table.

» FIGURE 5-1 R s

A S0P o

L X=AB+CD | —_—

¢ c—*

D) —

{n) Logic diaf.:m :ANSI stancand distinctive 1bh ANSI standand rectangular outline symbol

ape sy
* TABLE 5-1
INPUTS
A B c D AB
0 13 Lt} 0 (1]
(1] (1] 0 1 0
0 1] 1 0 0
(H} (1} 1 1 0
0 1 (1] 0 0 i 0
i} I 0 1 i} 0 0
(}} 1 1 0 V] 0 0
] 1 1 1 0 1 1
1 o0 0 [t}] (] 0
I (i} 1] 1 0 (i} 0
) 0 1 0 0 0 (1}
1 0 1 1 0 1 1
1 1 [0 1 (] 1
1 1 [t} 1 1 0 |
1) 1 0 | 0 /|
1 1 1 1 1 1 1
An AND-OR circuit directly imple an SOP exp i the compl. fif

any} of the variables are available. The operation of the ANIJ OR circuit in I-tgurv: 5-1is
stated as follows:

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and
input B are HIGH (1) or both input € and input [are HIGH (1).

174 w DIGITAL FUNDAMENTALS

I EXAMPLE 5-1
In a certain chemical-processing plant, & liquid chemical is used in a manufacturing

process. The chemical s stored in three different tanks. A level sensor in each tank pro-
duces ¢ HIGH voltage when the level of chemical in the tank drops below a specified

point.

Design a circuit that monitors the chemical level in each tank and indicates when the

level in any two of the tanks drops below the specified point.

Solution The AND-OR circuit in Figure 5-2 has inputs from the sensors on tanks A, 5, and C as
shawn. The AND gate G, checks the levels in tanks A and B, gate G, checks tanks A and
C, and gate G, checks tanks B and C. When the chemical level in any two of the tanks gets
too low, one of the AND gates will have HIGHs on both of its inputs causing its output to
be HIGH, and so the final output X from the OR gate is HIGH. This HIGH input is then
used to activate an indicator such as a lamp or audible alarm, as shown in the figure.

4 FIGURE 5-2

Supplementary Problem Write the Boolean SOP expression for the AND-OR logic in Figure 5-2.

AND-OR-Invert Logic

When the output of an AND-OR cireuit is complemented (inverted), it results in an AND-OR-
Invert circuit. Recall that AND-OR logic directly implements SOP expressions, POS expres-
sions can be implemented with AND-OR-Invert logie. This is illustrated as follows, starting
with a POS expression and developing the ponding AND-OR-Invert expression,

X=(3 +B)C + D) = (ABYCD) = (ABKCD) = AB + CD = AF £ CD

The logic diagram in Figure 5-3(a) shows an AND-OR-Invert circuit and the development
of the POS output exy ion, The ANSI i rectangular outling symbol is shown in

4 A+ O Wi+ 0 = (A+BRC+ D)

c
o o

[E1)

i FIGURE 5-3

21

COMBINATIONAL LOGIC = 175

part (b). In general, an AND-OR-Invert circuit can have any number of AND gates each with
any number of inputs,
The operation of the AND-OR-Invert circuit in Figure 5-3 is stated as follows:

For a 4input AND-OR-Invert logic circuit, the output X is LOW (0} if both input A
and input # are HIGH (1) or both input C and input D are HIGH (1)

A truth table can be developed from the AND-OR truth table in Table 5-1 by simply changing
all s to Os and all 0s to 1s in the output column.

ImﬂPLE 5-2
‘The sensors in the chemical tanks of Example 5-1 are being replaced by a new model that

Solution

Supplementary Problem

produces a LOW voltage instead of a HIGH voltage when the level of the chemical in the
tank drops below a critical point.

Modify the circuit in Figure 5-2 to operate with the different input levels and still pro-
duce a HIGH output to activate the indicator when the level in any two of the tanks drops
below the eritical point. Show the logic diagram.

The AND-OR-Invert circuit in Figure 5—4 has inputs from the sensors on tanks A, B, and €
as shown. The AND gate G, checks the Jevels in tanks A and 8, gate G, checks tanks A and
€, and gate G5 checks tanks B and C. When the chemical level in any two of the tanks gets
too low, each AND gate will have a LOW on at least one input causing its output 1o be
LOW and, thus, the final output X from the inverter is HIGH. This HIGH output is then
used to activate an indicator.

Indicator

& FIGURE 5-4

Write the Boolean expression for the AND-OR-Invert logic in Figure 5-4 and show that
the output is HIGH (1) when any two of the inputs A, B, and € are LOW (0).

AND-OR-INVERT INTEGRATED CIRCUITS

The 74LS51 and the T4LS54 are examples of AND-OR-Tnvert logic, The 74LS51
includes two separate AND-OR-Invert circuits in a single package. One circuit has two
2-input AND gates and the other circuit has two 3-input AND gates, as shown in Figure
5-5(a). The T4LS54 is a single AND-OR-Invert circuit that has two 2-input AND gates
and two 3-input AND gates, as shown in Figure 5-5(b). Notice that the inversion is indi-
cated by a bubble on the output of the OR gates in each case, showing that the OR-Invert
part of the circuit is effectively a NOR gate.

i76 = DIGITAL FUNDAMENTALS

Voo

[i

|m
GKD GND
() TAL551) TAL554

4 FIGURE 5-5

Exclusive-OR Logic
The exclusive-OR gate was introduced in Chapter 3. Although, because of its importance, this
circuit is considered a type of logic gate with its own unique symbol, it is actually a combina-
tion of two AND gates, one OR gate, and two inverters, as shown in Figure 5-6(a). The two
ANSI standard logic symbaols are shown in parts (b) and (c).

X=AB+AH

A A
B B
(b) ANSI distinetive feh ANSI rectangular
ahape symbal outline symbol

B
ia) Logic diagram

A FIGURE 5-&

‘The output expression for the circuit in Figure 5-6 is
X =AB + AB
Evaluation of this expression results in the truth table in Table 5-2. Notice that the output is
HIGH only when the two inputs are at opposite levels. A special exclusive-OR operator @ is
often used, so the expression X = AB + AB can be stated as “X is equal 10 A exclusive-OR 8"
and can be written as
X=AmbS8

COMBINATIONAL LOGIC

= TABLE 5-2
Truth table for exclushve-OR

[Exclusive-NOR Logic

As you know, the I of the exclusive-OR is the exclusive-NOR, which is
derived as follows:

X=AB+AB=(AB)(AB) = (A + BNA + B) = AB + AB-

Notice that the output X is HIGH only when the two inputs, A and 8, are at the same level,

lusive-NOR can be impl d by simply i ing the output of an exclusive-OR,
as shown in Figure 5-7(a), or by dircctly implementing the expression AB + AR, as shown in
part (b).

177

* FIGURE 5-7
(8) X=AB+AB (h) X =Al+AB
::3’:1?\"" 31 1. Determine the output (1 or 0) of a 4-variable AND-OR-lnvert circuit for eack of the
s e oF following input conditions:
the chapter. (3) A=1,8=0,C=1,D=0 (b) A=1,B=1,€=0,D=1

(c)A=08=1,C=1,D=1

2. Determine the cutput (1 or 0) of an excluiive-OR gate for each of the following input

conditions:
(a) A=1,B=0 (b) A=1,B=1
(c) A=0,8=1 (d) A=0,6=0.

3. Develop Une_lruth table for certain 3-input logic circuit with the output expressicn |

X = ABC + ABC + ABC + ABC + ABC.
4. Draw the logic diagram for an exclusive-NOR circuit.

IMPLEMENTING COMBINATIONAL LOGIC

In this section, ples are used 1o how 1o impl a logic circuit from a
Boolean expression or a truth table. Minimization of a logic circuit using the methods
covered in Chapter 4 is also discussed.

After completing this section, you should be able 1o

= Implement a logic circuit from a Boolean expression = Implement a logic circuit
from a truth table = Minimize a logic circuit

178 = DIGITAL FUNDAMENTALS

& FIGURE 5-8

From a Boolean Expression to a Lngnc Circuit
Letus ine the following Bool r
X=AB+ CDE

A brief inspection shows that this expression is composed of two terms, AR and CDE, with a

domain of five variables. The first term is formed by ANDing A with B, and the second term is

formed by ANDing C, D, and E. The two tenms are then ORed 10 form the ourput X. These
are indicated in the of the ion us follows:

S — AND

X= AR + CDE

OR

MNote that in this particul: ion, the AND operations forming the two individual terms,
AB and CDE, must be pc.rl'ormcd before the terms can be ORed.

To impl this Bool jon, 2 2-input AND gate is required to form the term
AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then
required to combine the two AND terms. The resulting logic circuit is shown in Figure 5-8.

X=Alt+ CDE

As another ple, let us impl the following exg
X = AB(CD + EF)
A breakdown of this expression shows that the terms A, and CD + EF are ANDed. The term
€D + EF is formed by first ANDing C and 0 and ANDing E and F, and then ORing these
two terms, This structure is indicated in relation to the expression as follows:
F———=—== AND

| NOT
vl Lc——OR

X = AB(CD + EF)
T asD

(]

Before the expression can be formed, you must have the term CD + EF; but before you
can get this tenm, you must have the terms CD and EF; but before you can get the term €D,
you must have D, So, as you can see, the logic operations must be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

1. Onc inverter to form D

2. Two 2-input AND gates to form CD and EF
3. One 2-input OR gate to form CD + EF

4. Onc 3-input AND gate to form X

COMBINATIONAL LOGIC =

‘The logic circuit for this expression is shown in Figure 5-9(a). Notice that there is a maxi-
mum of four gates and an inverter between an input and output in this circuit (from input D w
output). Often, the total propagation delay time through a logic circuil is a major considera-
tion. Propagation delays are additive, so the more gates or inverters between input and output,
the greater the propagation delay time.

ABCD

T

X = AB(CD + EF)

E ABEF
F

(ah k) Sum-of-products implementation of the circuit in part (s}

A FIGURE 5-9

;D—X =ABCD + ABEF

Unless an intermediate term, such as CD + EF in Figure 5-%(a), is required as an output for
some other purpose, usually best to reduce a circuit to its SOP form. The expression is con-
verted to SOP as follows, and the resulting circuit is shown in Figure 5-9(b),

ABICD + EF) = ABCD + ABEF

From a Truth Table to a Logic Circuit

If you begin with a truth table instead of an expression, you can write the SOP expression from the
truth table and then implement the logic circuit. Table 5-3 specifies a logic function,

» TABLE 5-3
INPUTS | OuTPUT
8 - PRODUCT TERM
0 [0 0 |
i i I il |]
(] 1 0 0 I 3
i} I | | ABC
1 0 0 1 ABC
1 L] 1 0
1 1 L]] %
1 1 I i 4
~y walT]
The Boolean SOP exg i ined from the truth table by ORing the product terms for
which X = 1is

X = ABC + ABC.

The first term in the expression is formed by ANDing the three variables A, B, and C. The
second term is formed by ANDlng the three variables A, B, and C.

The logic gates required to impl this expression are as follows: three inverters 1o
form the A, B, and C variables; twu J-input AND gates to form the terms ABC and ABC; and

one 2-input OR gate o form the final output function, ABC + ABC.

179

180 = DIGITAL FUNDAMENTALS

The implementation of this logic function is illustrated in Figure 5-10.

X=ABC + ABC

C—a

A FIGURE 5-10

| EXAMPLE 5-3
Design 2 logic ¢

it to implement the operation specified in the truth table of

Tuble 54.
¥ TABLE 5-4 . o
INPUTS QUTPUT i
B c X PRODUCT TERM
U] 0 0 1]
0 o 1 L]
0 1 0 (1]
0 i 1 1
1 i 0 1]
1 0 1 1
| | 0 1
1 1 1 0
Solution Notice that X = 1 for only three of the input conditions. T the logic expression is

X = ABC + ABC + ABC.
The Jogic gates required are three inverters, three 3-input AND gates and one 3-input OR
gate. The logic circuit is shown in Figure 5-11.

» FIGURE 5-11 . g o

Supplemantary Problem Determine if the logic circuit of Figure 5-11 can be simplified.

COMBINATIONAL LOGIC = 181

EXAMPLE 5-4
Develop a logic circuit with four input variables that will only produce a | output when
exactly three input varables are 1s.
Solution Out of sixteen possible i of four vadables, the binstions in which there are
exactly thrée 1s are listed in Table 5-5, along with the corresponding product wem for
each.

» TABLE 5-5
A B c [PRODUCT TERM
0 1 L 1 ABCD
1 0 1 I ABCD
1 i 0 | ABCD
1 1 1 0 ARCD
=] S o s

RN ACRLE SR 1 Wt L

The prodoct terms are ORed to get the Tollowing expression:
X = ABCD + ABCD + ABCD + ABCD
This expression is implernented in Figure 5-12 with AND-OR logie,

FIGURE 5-12 PR

Y ..

AR
|

Supplementary Problem . Determine if the logic circuit of Figure 5-12 can'be simplified.

182 = DIGITAL FUNDAMENTALS

| EXAMPLE 5-5

> FIGURE 5-13

Reduce the combinational logic circuit in Figure 5-13 to a minimum form. ’

Solution

Supplementary Problem

|EXAMPLE 5-6

1]

‘The expression for the output of the circuit is
X={(ABOIC +ABC+ D
Applying DeM "8 th and Boolean algebra,

X=A+B+CC+A+B+C+D
=AC+BC+CC+A+B+C+D
=AC+BC+C+A+B+E£+D
=CA+B+1)+A+B+D :

X=A+B+C+D |

The simplified circuit is a 4-input OR gate as shown in Figure 5-14.

> FIGURE 5-14

i
n

Verify the minimized expression A + B + C + D using a Kamangh map.

|
Minimize the combinational logic circuit in Figure 5-15. Inverters for the complemented |
varigbles are not shown. |

> FIGURE 5-15

Tt T e DIt = m

COMBINATIONAL LOGIC = 183

Solution The output expression is

X = ABC + ABCD + ABCD + ABCD
Expanding the first term to include the missing variables D and D,
X = ABC(D + D) + ABCD + ABCD + ABCD
=ABCD + ABCD + ABCD + ABCD + ABCD
This expanded SOP expression is mapped and simplified on the Karmaugh map in Figure
S—164a). The simplified implementation is shown in part (b), Inverters are not shown.

S0 =

[EY] b

4 FIGURE 5-14&

I ﬂ e

Supplementary Problem Develop the POS equivalent of the circuit in Figure 5-16(b),

|:EE$1T;?VN§—Z 1; tmpt the following Book ions as they are stated:

(3) X=ABC + AB+AC (b) X=AB(C + DE)

2. Develop a logic circuit that will produce a 1 en its cutput enly when all three inputs are

15 or when all three inputs are s,
3. Reduce the circuits in Question 1 to minimum 5OP form.

[52377 THE UNIVERSAL PROPERTY OF NAND AND NOR GATES

Up 1o this point, you have studied combinational circuits impl d with AND gates, OR
gates, and inverters. In this section, the universal property of the NAND gate and the NOR
gate is discussed. The universality of the NAND gate means that it can be used as an inverter
and that combinations of NAND gates can be used to implement the AND, OR, and NOR
operations. Similarly, the NOR gate can be used to implement the inverter, AND, OR, and
NAND operations.

After completing this section, you should be able 1o

= Use NAND gates to implement the inverter, the AND gate, the OR gate, and the NOR gate
® Use NOR gates to implement the inverter, the AND gate. the OR gate, and the NAND gate

184 = DIGITAL FUNDAMENTALS

» FIGURE 5-17

The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used 1o produce the NOT, the AND, the
OR, and the NOR functions. An inverter can be made from a NAND gate by connecting all of
the inputs together and creating, in cffect, a single input, as shown in Figure 5-17(a) for a
2-input gate. An AND function can be generated by the use of NAND gates alone, as shown in
Figure 5-17(b). An OR function can be produced with only NAND gates, as illustrated in part
{c). Finally, a NOR function is produced as shown in part (d).

In Figure 5-17(b), a NAND gate is used to invert (complement) a NAND output to form
the AND function, as indicated in the ing equati

X=AB=AB
In Figure 5-17(c), NAND gates G, and G are used to invert the two input varisbles before
they are applied to NAND gate G,. The final OR output is derived as follows by application of
DeMorgan’s theorem:
X=AB=A+B

In Figure 5-17(d), NAND gate G, is used as an inverter connected to the circuit of part (c)
to produce the NOR operation A + B.

From the above discussion we conclude that the NAND gates can be used to produce any
logic function.

A —ED)—I A —Do—
(4} A NAND gate used 25 an inverter
A AR — A
AR - AR AB
B B

(bh Two NAND gates used as an AND gase

{d) Four NANDY gates used as a NOR gate

The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and NAND
functions, A NOT circuit, or inverter, can be made from a NOR gate by connecting all of the
inputs together to effectively create a single input, as shown in Figure 5-18(a) with a 2-input
example. Also, an OR gate can be produced from NOR gates, as illustrated in Figure 5-18(b).

COMBINATIONAL LOGIC = 185

An AND gate can be constructed by the use of NOR gates, as shown in Figure 5-18(c). In this
case the NOR gates G, and G, are used as inverters, and the final output is derived by the use
of DeMorgan's theorem as follows:

X=A+B=AB

Figure 5-18(d) shows how NOR gates are used to form a NAND function.
Thus, NOR gates, similar to NAND gates, can be used to produce any logic function.

> FIGURE 5-18
A ——EDO—.E a

{21 A NOR gate used as an mwverter

——
D
D

) Two NOR: gnses used as an OR gate

1) Four NOR gates used as u NAND gate

I iig:l%u) 1. Use NAND gates to implement each expression:

(a) X=A+B (b) X = AB
2. Use NOR gates to implement each expression:
(a) X=A+8B (b) X =AB

52377 COMBINATIONAL LOGIC USING NAND AND NOR GATES

In this section, you will see how NAND and NOR gates can be used to implement a logic
function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent operation
called the negative-OR and that the NOR gate exhibits an equivalent operation called the
negative-AND. You will see how the use of the appropriate symbols to rep the equiva-
lent operations makes “reading™ a logic disgram casier.

After completing this section, you should be able to

= Use NAND gates to implement a logic function = Use NOR gates to implement a logic
function = Use the appropriate dual symbol in a logic diagram

186 ® DIGITAL FUNDAMENTALS

* FIGURE 5-10

NAND Logic
As you have learned, a NAND gate can function as either a NAND or a negative-OR because,
by DeMorgan's theorem,
AB = A+ B
NAND) 1 OR
Consider the NAND logic in Figure 5-19. The output expression is developed in the
following steps:
X = (ABNCD)
= (A + BXC + D)
=@A+B+(C+D)
=AB+CD
=AB+ CD

= FIGURE 5-1% A

iF
NAND logic for X = AB + €D. ['
G, p—=X=dB+CD

As you can see in Figure 5-19, the output expression, AB + CD, is in the form of two
AND terms ORed together. This shows that gates G; and Gy ac as AND gates and that gate
G, acts as an OR gate, as illustrated in Figure 5-20(a). This circuit is redrawn in part (b) with
NAND symbols for gates G, and G and a negative-OR symbol for gate G,.

Motice in Figure 5-20(b) the bubble-to-bubble connections between the outputs of gates G,

and Gy and the inputs of gate Gy. Since a bubble rep an ion, two © o bub-
bles rey a double i and th cancel each other, This inversion cancellation
7y acts a8 AND
A
B
AB + CD
c
n
G nets as OR
5y ac13 a3 AND
(2) Original NAND logic diagram showing elfective
pale ! lative Lo the outpat d

LS

= B AB+CD

(b} Equivaleat NAND/Negative-OR logic diagram fc) AND-OR equivalent

an

COMBINATIONAL LOGIC

can be seen in the previous development of the output expression AB + CD and is indicated
by the absence of barred terms in the output expression. Thus, the circuit in Figure 5-20(h) is
effectively an AND-OR circuit as shown in Figure 5-20{c).

NAND Logic Diagrams

All logic diagrams using NAND gates should be drawn with esch gate represented by either 2
NAND symbol or the equivalent negative-OR symbol 1w reflect the operation of the gate
within the logic circuit. The NAND symbol and the negative-OR symbol are called dual
symbeols.

If we begin by representing the output pate with a negative-OR symbol, then we will use
the NAND symbol for the level of gates right before the output gate and will alternate the
symbuols Tor successive levels of gates as we move away from the owiput, Always use the gate
symbols in such a way that every connection between a gate output and a gate input is cither
bubble-to-bubble or nonbubble-to-nonbubble. A bubble output should not be connected to a
nonbubble input o vice versa in a logic diagram.

Figure 5-21 shows an arrangement of gates 1o illustrate the procedure of using the appro-
priate dual symbols for a NAND circuit with several gate levels, Although using all NAND
symhals as in Figure 5-21(a) is comect and there is nothing wrong with it, the diagram in pan
(b} is much easier to “read” and is the preferred method. The shape of the gate indicates the
way its inputs will appear in the output expression and thus shows how the gate functions
within the logic circuit, For a NAND symbaol, the inputs appear ANDed in the output expres-
sion: and for a negaiive-OR symbol, the inputs appear ORed in the output expressi
Figure 5-21(b) illustrates. The dual-symbol dizgram in part (b) makes it easier (o determine
the output expression directly from the logic diagram because exch gate symbol indicates the
relationship of its input variables as they appear in the output expression.

a5

> FIGURE 5-21 1

— AL

= ABCI +
= AR+ O+ EF
Al 4 O+ EF
i) Several Boolean steps are required io arvive &l final owipal expressaon.
AND
Bubble cancels bar
A _ Al
! Babble
& cancels

¢
148 = Ol + EF
OR

Bubble adds)
s to &

Bubble
cancels bar

OR
AND

) Cutput expression cam be obtained directly from the function of each gate symbeol in the diagram

187

188 = DIGITAL FUNDAMENTALS

I EXAMPLE 5-7
Redraw the logic disgram and develop the output expression for the circuit in Figure 5-22

using the appropriate dual symbols,

» FIGURE 5-22

Solution Redraw the logic diagram in Figure 5-22 with the use of equival gative-OR symbol

as shown in Figure 5-23, Writing the expression for X directly from the indicated lngu:
operation of each gate gives X = (A + B)C + (D + E)F.

= FIGURE 5-23

X=id+ B+ v BWF

Supplementary Problem Derive the output expression from Figure 5-22 and show it is equivalent to the expression
in the solution,

| EXAMPLE 5-8 o
. Implement each expression with NAND logic:

! (a) ABC + DE (b) ABC+D +E
Solution Sec Figure 5-24.

. B Huhble cancels bar) s Bubble cancels bar
L ED I o . N
" AR+ DE o @—.\M D+E
L i Bubble cancels bar Bubbles add bars o D and E
{ap [

FIGURE 5-24

Supplementary Problem Convert the NAND circuits in Figure 5-24(a) and (b) 1o equivalent AND-OR logic.

COMBINATIONAL LOGIC = 18%

NOR Logic
A NOR gate can function as either 2 NOR or a negative-AND, as shown by DeMorgan’s
theoret.
A+B = AB
NOR T L gative-AND

Consider the NOR logic in Figure 5-25. The output expression is developed as follows:
X=A+B+C+D=(A+BIC+D) =+ BNC+D)

* FIGURE 5-25 A B‘
8
.

n

Notice that the output expression (A + B)C + D) consists of two OR terms ANDed 1ogether,
This shows that gates Go and G, act as OR gates and gate G| acts as an AND gate, as illus-
trated in Figure 5-26{a). This circuit is redrawn in part (b) with a pegative-AND symbol for
gate Gy,

* FIGURE 5-2& G.acis as OR Bubbles cancel

! d
A+ BHC + D —:l»unt‘-ﬂ-
Ay
G, acts 28 AND]

iy acts a3 OK

fah by

As with NAND logic, the purpose for using the dual symbaols is to make the logic dia-
gram easier to read and analyze, as illustrated in the NOR logic circuit in Figure 5-27.
When the circuit in part (a) is redrawn with dual symbols in part (b), notice that all
output-to-input connections between gates are bubble-to-bubble or nonbubble-1o-no bub-
ble. Again, you can see that the shape of each gate symbol indicates the type of term
(AND or OR) that it produces in the output expression, thus making the output expression
easier to determine and the logic diagram easier to analyze.

» FIGURE 5-27(a) "

iap Fenal outpia expression is oblaiped after several Bookean sleps.

190 = DIGITAL FUNDAMENTALS

» FIGURE 5-27{b}

[{A + BIC + DI(E + Fy

() Oratprat ion can be obtained directly from the function of each gate symbol in the diagram.

| EXAMPLE 5-9
Using appropriate dual symbols, redraw the logic diagram and develop the output expres-

sion for the circuit in Figure 5-28.

*~ FIGURE 5-28

Solution Redraw the logic diagram with the equival tive-AND sy as shown in Figure

5-29, Writing the expression for X directly from thr.' mdlca.tcd operation of each gate,
X = (AB + C{DE + F)

(A & CHDE + F) = (AR + CHDE + F)

4 FIGURE 5-29

Supplementary Problem Prove that the output of the NOR circuit in Figure 5-28 is the same as for the circuit in
Figure 5-29,

| |samon 5-4 ST LR
| IREVIEW 1. Implement the expression X = (A + B + C)DE by wing MAND logic.

2. Imolement the expression X = ABC + (D + E) with NOR

COMBINATIONAL LOGIC

IBES oG CIRCUIT OPERATION WITH PULSE WAVEFORMS

191

Several of general combinational logic circuits with pulse waveform inputs are
ewnhedimhhswﬂmhepmmhdMlhcopemmofmhmhﬂnmhpuku
inputs as for constant-level inputs. The output of a logic circuit at any given time depends on
the inputs at that particular time, so the relationship of the time-varying inputs is of primary
importance.

After completing this section, you should be able 1o
Analyze combinational logic circuits with pulse waveform inputs @ Develop a timing
diagram for any given combinational logic circuit with specified inputs

‘The operation of any gate is the same regardless of whether its inputs are pulsed or con-
stant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth table of
a circuit. The examples in this section illustrate the analysis of combinational logic circuits
‘with pulsed inputs.

The following is a review of the operation of individual gates for use in analyzing combi-
national circuits with pulse waveform inputs:

1. The output of an AND gate is HIGH only when all inputs are HIGH at the same time.
2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.
3. The cutput of a NAND gate is LOW only when all inputs are HIGH at the same time.

4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

! | EXAMPLE 5-10

Determine the final output waveform X for the circuit in Figure 5-30, with input wave-

forms A, B, and C as shown.

X=AB+C) =18+ AC

4 FIGURE 5-30

output of the OR gate is also shown.

w.mmm Determine the output waveform if input A is a constant HIGH level. -

Solution The output ion, AH + AC, indicates that the output X is LOW when both A and B

are HIGH or when both A and € are HIGH or when all inputs are HIGH. The output wave-
form X is shown in the timing diagram of Figure 5-30. The intermediate waveform ¥ at the

192 = DIGITAL FUNDAMENTALS

Solution

Draw the timing diagram for the circuit in Figure 5-31 showing the outputs of Gy, G, and
Gy with the input A, and B, as indicated,

4 FIGURE 5-31

‘When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as shown
in Figure 5-32. Notice that this is an exclusive-NOR circuit. The i fiate outputs of
gates G and G, are also shown in Figure 5-32.

AT T]
1] 1 [}
Bt
1 1}
Gyompar __| HE

e Hi—

A FIGURE 5-32

Imum.s 5-12

D ine the output X in Figure 5-31 if input B is inverted.

Determine the output waveform X for the logic circuit in Figure 5-33(a) by first finding the
intermediate waveform at each of points ¥y, ¥;, ¥s, and ¥,. The input waveforms are shown
in Figure 5-33(b).

Solution

COMBINATIONAL LOGIC = 193

[(1]

A B i

1 1 i 1 1 1 1 i 1 1} 1

1 1 -k 1 1 1 1 i 1 1 1
L S B T

1 1 1 1 1 1 1 1 1 1
T e e S I

Cy I i I i i i H '

1 1 1 1] 1 1 i 1 1

1 1 1 1 [} i ' | S ——— 1

LB U TS SR SR S S S i
U S N N Lo

P H
S NS S S N I B B
1

e e T S

1 1 1 1 [1 1 1 1

¥l]] T]] 1
I W

I '

I e e | S —
[o] oL

A FIGURE 5-33

All the intermediate waveforms and the final output waveform are shown in the timing
diagram of Figure 5-33{c).

EXAMPLE 5-13

W

Selution

D ine the ¥y, Y, ¥y, ¥, and X if input waveform A is inverted.

Determine the output waveform X for the circuit in Example 5-12, Figure 5-33{a), directly
from the output expression.

The output expression for the circuit is developed in Figure 5-34. The SOP form indicates
that the output is HIGH when A is LOW and C is HIGH or when B is LOW aml C is HIGH
or when C is LOW and D is HIGH.

« B O

~ FIGURE 5-34

194 m DIGITAL FUNDAMENTALS

The result is shown in Figere 5-35 and is the same as the one obtained by the interme-
diamte-waveform method in E le 5-12, The ponding product terms for each
waveform condition that results in a HIGH output are indicated,

BC x
— o ,_CL
% 0 s) s o Y s O

Ll

1

A FIGURE 5-35

Supplementary Problem Repeat this example if all the input waveforms are inverted.

| . —
| ::g‘:’é;ﬂ 5-5 1. One pulse with ty = 50 us is applied to one of the inputs of an exclusive-OR circuit.

A second positive pulse with fy = 10 ps is applied to the other input beginning 15
s after the leading edge of the fint pulse. Show the cutput in relation to the inputs.

| 2. The pulse waveforms A and B in Figure 5-30 are applied to the exclusive-NOR dircuit in
Figure 5-31. Develop 2 complete timing diagram.

SUMMARY

AND-OR logic produces an output expression in SOP form.

& AND-OR-Invert logic produces a complemented SOP form, which is actually a POS form.
7 1 symbol for exclusive-OR is @). An exclusive-DR expression can be stated in two
cquivalent ways:

AB+AB=A@B

To do an analysis of a logic circuit, start with the logic circuit, and develop the Boolean output
expression or the truth table or both,

=& Implementation of a logic circuit is the process in which you siart with the Boolean output expres-
sions or the truth table and develop a logic circuit that produces the output function,

All NAND or NOR logic diagrams should be drawn using appropriate dual symbols so that bubble
outputs are connected 1o bubble inputs and oupas are 0 ble inputs.

= When two negation indi bubbles) are 1, they effectively cancel each other.

COMBINATIONAL LOGIC

SELF-TEST Angwen are at the end of the chapter.

195

1. The cutput expression for an AND-OR circuit having one AND gate with inputs A, B, C, and D and

™

™

"

e

10

one AND gate with inputs E and Fis

{a) ABCDEF A+B+C+D+E+F

€A+ 8+ C+DHE+ Fy (d) ABCD + EF

A logic circuit with un output X = ABC + AC consists of

{a) two AND gates and one OR gate

() two AND gates, one OR gate, and two inveniers

e} two OR gates, one AND gate, and two inverters

{d) two AND gates. one OR gate. and one inverter

To implement the expression ABCD + ABCD + ABCD, it takes one OR gate snd
(a) one AND gate (b} three AND gates

ic) three AND pates and four inverters (d) three AND gates and (hree inverters
The expression ABCD + ABCD + ABCD

{a) cannot be simplified

(b) can be simplified to ABC + AB

{e) can be simplified to ABCD + ABC

{d) None of these answers is comect.

The output expression for an AND-OR-Inven circuit having one AND gate with inputs, A, B, C, and

I and one AND gate with inputs E and Fis

(@) ABCD + EF B)A+B+C+D+E+F
©@A@FE+CHDIEFH @ A+B+C+DHE+F)
An exclusive-OR function is expressed as

{a) AB + AB ib) AB + AR
©@@A+BIA+B) (@ @A+E+ALE

The AND operation can be produced with

(@) two NAND gates (b} three NAND gates

{e) one NOR gate {d) three NOR gates

The DR operation can be produced with

{2) two NOR gates b} three NAND gates

{e) four NAND gares (d} both answers (a) and (b)
When using dual symbols in a logic diagram,

{a) bubhle outputs are connected 1o bubble inputs

i) the NAND symbols produce the AND operations

{e) the negative-OR symbols produce the OR operations
(d) Al of these answers are true,

(e) None of these answers is tree.

All Boolean expressions can be implemented with

(m) NAND pates only

(b} NOR gates only

{e) combinations of NAND and NOR gates

{d} eombinations of AND gates, OR gates, and inverters
(e} amy of these

196 ® DIGITAL FUNDAMENTALS

SECTION 5-% Basic Combinational Logic Circults
1. Draw the ANSI distinctive shape logic diagram for a 3-wide, 4-input AND-OR-Invert circuit. Also,

draw the ANSI stundard rectangular outline symbol.
2. Write the output expression for each circuit in Figure 536,
3. Write the ourput expresshon for each cireudt & it appears in Figure 537,

E]
TR >

A
e

il

¢
ia} by

& FIGURE 5-36

A A a

5 . B . X
X X »

@)]

ieh

A I
A B8
&
X ¥
[
¢
] i)

{d]
A FIGURE 5-37

4. Write the ourput expression for each circuit as it appears in Figure 5-38 and then change cach
circuit to an equivalent AND-OR configuration,

5. Develop the wruth table for each circuit in Figure 5-37.

6. Develop the truth table for each circuit in Figure 5-18,

7. Show that an exclusive-NOR circuil produces a POS oatput.

SECTION 5-2 lmph ing Combinational Logic
8. Usc AND gates, OR. gates, o inations of both to i the ing logic
stated:
(a) X=AB b X=A+E fed X=AB+C
h X =ABCD

() X=ABC + D &) X=A+B+C
(g X=AICD+ B) (h) X = ABIC + DEF)+ CEIA+ B+ F)

COMBINATIONAL LOGIC = 1%7

a
A ‘ X
o o
fap ik
a .
@ ——| 2 i b
i X
o X
o P
E (]
i) iy
A
L3
A — ¢
B
o
e ¥op X
I i
E &
() I
i
& FIGURE 5-38
9. Use AND gates. OR gates, and inverters as necded to impl the following hopic expressions as
stated:
(a) X = AB + BC b} X = A(B +)
(c) X = AB + AH (d) X = ABC + BEF + G)

(e) X = A[BCIA + B+ C+ D)
10, Use NAND gates, NOR gates, or

as stated:

(N X = BICDE + EFGKAB + ©)

of both to imy the following logie exy

(a) X = Al + CD + (X BYACD + BEY (b) X = ABCD + DEF + AF

c) X = AlB + CD +)]

11, Implement a logic eircuit for the sruth table in Table 5-6.

12. Implement a logie cireuit for the truth table in Table 5-7.

13. Simplify the circuit in Figure 5-39 as moch as possible, and verify that the simplified circuit is

equivalent 10 the original by showing that the truth tables are idengical.
14, Repeat Problem 13 for the circuit in Figure 5-40,

15. Minimize the gates required to implement the functions in each part of Problem 9 in SOP form.
6. Minimize the gates required to implement the functions in each part of Problem 10 in SOP form.
17. Minimize the gates required to implement the function of the circuit in each part of Figure 5-38 in

S0P form.

198 = DIGITAL FUNDAMENTALS

= TABLE 5-&
= TABLE 5-7
= FIGURE 5-3% A =iy
B —
X
C
= FIGURE 5-40 A
L]
c

SECTION 5-3

SECTION 5-4

SECTION 5-5

* FIGURE 5-41

F FIGURE 5-42

> FIGURE 5-43

= FIGURE 5-44

COMBINATIONAL LOGIC = 199

The Universal Property of NAND and NOR Gates

18. Implement the logic circults in Figure 5-36 using only NAND gares,
19. Implement the logic circuits in Figure 540 using only NAND gates.
20. Repeat Problem 18 using anly NOR gates,

21, Repeat Problem 19 using only NOR gates.

Combinational Logic Using NAND and NOR Gates

21, Show how the £ exy can be imp as stated using only NOR gates:
() X =ABC (b) X = ABC) X=A+§
@X=A+B+C @ X=AB+CD (N X=04+BIC+D

{g) X = AB[CIDE + AB) + BCE]
23, Repeat Problem 22 using only NAND gates.
24, Implement each function in Problem B by using only NAND gates.
25, Implement cach function i Problem 9 by using only NAND gates.

Logic Circuit Operation with Pulse Waveforms
26. Given the logic circuit and the input waveforms in Figure 541, draw the output waveform.
27. For the logic circuil in Figure 542, draw the output waveform in proper relationship w the inputs.

AL R
uginigipipipiy
A
ATl T .
3 DU N oy H g

28. For the input waveforms in Figure 5-43, what logic circuit will generate the output waveforn
shown?
. el

S

s 5 H |
H [S A R) S

o
ow x AL A AL

29, Repeat Problem 28 for the waveforms in Figure 5-44.

30. For the circuit in Figure 5-45, draw the waveforms a2 the numbered points in the proper relationship
1o cach other.

31. Assuming a propagation delay through each gate of 10 nancseconds (ns), determine if the desired
output wavefarm X in Figure 56 (a pulse with a minimnum ry, = 25 ns positioned s shown) will be
generated properly with the given inputs,

A1 _4'_3 L
Inputs & '_'__|E—E—___
el . T

200 = DIGITAL FUNDAMENTALS

= FIGURE 5-45

* FIGURE 5-4&

SECTION 5-1

SECTION 5-2

SECTION 5-3

SECTION 5-4

mm Th =

mET A om e

SECTION REVIEWS
Basic Combinational Logic Circuits
L AB+CD=1T-0+1-0=1 MAB+CD=1-1+0-1=0
D AB+CD=0-1+1-1=0
L) AB+AB=1-0+1:0=1 () AB+AB=1-1+1-1=0
@ AB+AB=0-T+0-1=1 () AB+AB=0-0+0-0=0
3 X = | when ABC = 000, 011, 101, 110, and 110: X = 0 when ABC = 001, 010, and 100
4. X = AB + AF; the circuit consists of two AND gates, one OR gate, and two inverters.
See Figure 5-7(b) for diagram.
ok e Coenk 1 Logic
1. (8) X = ABC + AB + AC: three AND gates, one OR gate
(b} X = AB(C + DE): three AND gates, one OR gate
2. X = ABC + AEC: two AND gates, one DR gate, and three inveners
A X=ABC+ 1)+ AC=AB + AC (b) X = AB(C + DE) = ABC + ABDE
The Universal Property of NAND and NOR gates
L (u) X = A + B a2-input NAND gate with A nd B on its inputs.

(b) X = AB: a 2-input NAND with A and B on its inputs, followed by one NAND used as an
inverter.

2 ta) X = A + B:a2-input NOR with inputs A and 8, followed by one NOR used as on inverter.
b) X = AB: a 2-input NOR with A and & on its inpurs
‘Combinational Logic Using NAND and NOR gates

L X = (A + B + C)DE: a 3-input NAND with inputs, A, B, and €, with its output connected to a

second 3-input NAND with two other inputs, D and £

2 X = ABC + (D + E):a3-input NOR with inputs A, B, and C, with its output connected to a
second 3-input NOR with two other inpats, [and £

Logic Circuit Operation with Pulse Waveforms

L. The exclusive-OR output is a 15 g5 pulse followed by a 25 s pulse, with a separation of 10 ps
between the pulses.

2. The output of the exclusive-NOR is HIGH when both inputs are HIGH or when both inputs are
LOW.

COMBINATIONAL LOGIC = 201

MTARY PROBLEMS FOR CXAMPLES

52 X=AB+ACTBC
KA=OandB=0X=0-0+0-T+0-T=0=
HA=Dand C=0,X=0-T+0-0+1-0
WE=0and C=0X=1-0+1-0+0-C=0=1

5-3 Connotbesimplified 54 Connot be simplified ~ 5-8 X = A+ B+ C + Ds valid.

5-6 SccFigure 547, 57 X = (ABCKDEF) = (ABIC + (DEW = (A + BIC + (D + EWF

58 Sec Figure 5K,

» FIGURE 5-47 4=

K= Cod v Boifi+ Dy

» FIGURE 5-48

B

A :

=D !

o T
—lr:D— A\RC + DE n ABC + B+

£ P

[(]

59 XY=(A+B+O)+D+E+F=(A+B+CKDFE+F=@F+ODE+ B
510 See Figure 549, 5-11 See Figure 5-50.
5-12 Sce Figure §-51. 5-13 See Figure 5-52.

‘IIU" -
B - - k -
[- -
¥ A AR LA
+ FIGURE 5-4% & FIGURE 5-50

BN

SN SO 8

)|

Jeenddo

A
B
o
D
X

4 FIGURE 5-52

L td) 2 by e 4. () 5 qdy 6. (h) Totah Boddy
Soid) I (2)

FUNCTIONS OF
CoMBINATIONAL LoGIC

CHAPTER OBJECTIVES

Deicribe the logic functions of the comparator, adder, code
converter, encoder, decoder, multiplexer, demultiplexer,
counter, and register

Distinguith between half-adders and full-adders
Use full-addens to implement multibit parallel binary adden

Explain the differences between ripple camy and lock-ahead
carry panaflel adders
Use the mags . to determine the

between two binary numbers and use cascaded comparaton to
handle the comparison of larger numbern

Implement a basic binary decoder
Use BCD-to-7-segment decoders in display systems

Apply a decimal-to-BCD priority encoder in a simple keyboard
application

Convert from binary te Gray code, and Gray code to binary by
using logic deviees

Apply multiplexers in data selection, muN.lpIcud displays, logic
function g and simple systems

w Use decoders as demultiplexers
= Explain the meaning of parity

Use parity generaton and checkens to detect bit errors in digital
nystems
® Impl a dimple data ications system

Identify glitches, comman bugs in digital systems

In this chapter, several types of fixed-function combinational
logjc circuits are intreduced including adders, comparators,
decod!rs, encndem code converters, rrmlbplnerx [dah

Itiph and parity g
Examples of rp‘em applications of many of these devices are
included to demonitrate how the devices can be used in
practical situations.

BASIC OVERVIEW OF LOGIC FUNCTIONS

The three basic logic elements AND, OR, and NOT can be combined to form more complex
Togic circuits that perform many useful operations and lh.l[are used to build complete digital

systems. Some of the common logic functions are

hmetic, code conversion,

anod:nl, decoding, data selection, storage, and coummb This section provides a general
overview of these important functions so s that you can begin to see how they form the build-
ing blocks of digital systems such as computers, The combinational logic circuits do not
require memaory elements, will be covered in detail in this chapter and the sequential circuits

will be covered in detail i

later chapters.

After completing this section, you should be able to

= [dentify eight basic types of logic functions ® Describe a basic magnitude comparator
= List the four arithmetic functions ® Describe a basic adder ® Describe a basic encoder

® Describe a basic decoder

® Define multiplexing and demultiplexing = State how data

storage is accomplished @ Describe the function of a basic counter

FUNCTIONS OF COMBINATIONAL LOGIC = 203

The Comparison Function
Magnitud, parison is perf d by a logic circuit called a comparator. A comparator
wo ities and indi whether or not they are equal, For example, suppose

you have two numbers and wish to know if they are equal or not equal and, if not equal, which
is greater. The comparison function is represented in Figure 6-1. One number in binary form
(represented by logic levels) is applied 10 input A, and the other number in binary form
(represented by logic levels) is applied to input 8. The outputs indicate the relationship of the
two numbers by producing a HIGH level on the proper output line. Suppose that a binary
representation of the number 2 is applied to input A and a binary n:pu-aemarmn of the number
5 is applied to input B. (We have discussed the binary ref of and symbol
in Chapter 2.) A HIGH level will appear on the A < B (A is less than B) output, indicating the
relationship between the two numbers (2 is less than 5). The wide arrows represent a group of
parallel lines on which the bits are transferred.

= FIGURE &-1 | Pt 2~
. N Comparatar
The comparivon function = Binury A [d— LOW
| code fio 2 4
B UI;[p:lh A=B |' p— LEW
| Rinary o
- I— code tor 3 A<B+—noil
)
ia) Basse magniude comparalorn by Examgle: A ks less thas B (2 < 3) as indscated by
the HIGH outpat (A < By
The Arithmetic Functions
Addition Addition is performed by a logic circuit called an adder. An adder adds two
binary numbers {on inputs A and & with a carry input Ci) and generates a sum (£) and a carry
output {Coy). as shown in Figure 6-2(a). Figure 6-2(b) illustrates the addition of 3 and 9. You
know that the sum is 12; the adder indicates this result by producing 2 on the sum output and
1 on the carry output. Assume that the carry input in this example is 0.
Adder
A
’ Uimar
Teo Sum ks 1 2
binery
numbers Carry out Birary Bomuy |
- B o
code for 9
Carry in ===l € Birsry () —
——— Binary
e fior 12
iaj Basic adder ibh Example: Apls 8i3+9=12}

A FIGURE &-2
The addition function

204 = DIGITAL FUNDAMENTALS

»F'GURE 6-3

Subtraction Subtraction is also performed by a logic circuit. A subtracter requires three
inputs: the two numbers that are to be sut 1 and a borrow input. The two outputs are the
difference and the borrow output. When, for instance, 5 is subtracted from 8 with no borrow
input, the difference is 3 with no borrow output. You have seen in Chapter 2 how subtraction
can actually be performed by an adder because subtraction is simply a special case of
addition.

Multipl; Multiplication is perf 1 by a logic circuit called a mulriplier. Numbers
are always multiplied two at a time, so two inputs are required. The output of the multiplier is
the product. Because multiplication is simply a series of additions with shifts in the positions
of the partial products, it can be performed by using an adder in conjunction with other
circuits,

Division Division can be performed with a series of subtractions, comparisons, and shifts,
and thus it can also be done using an adder in conjunction with other circuits. Two inputs to
the divider are required, and the outputs generated are the quotient and the remainder.

The Code Conversion Function

A code is a set of bits arranged in a unique pattern and used to represent specified informa-
tion. A code converter changes one form of coded information into another coded form.
E are k binary and other codes such as the binary coded decimal
fBCD] and the Gray code. Various types of codes have been covered in Chapter 2.

The Enceding Function

The ding function is perf d by a logic circuit called an encoder. The encoder con-
verts 1nrurmamn. such as a decimal number or an alphabetic character, into some coded form,
For example, one certain type of encoder converts each of the decimal digits, 0 through 9, to a
binary code. A HIGH level on the input comresponding o a specific decimal digit produces.
logic levels that represent the proper binary code on the output lines.

Figure 6-3 is a simple illustration of an encoder used to convert (encode) a calculator key-
stroke into a binary code that can be processed by the calculator circuits.

HIGH (o Encoder

— 8
-7)
— 6 Binary code
— s fior 9 used for
-4 storage andfor
— : COMmpuLation
=1

X L y

[[

LO@

Caleulae keypad

“The Decoding Function

The decoding function is performed by a logic circuit called a decoder. The decoder converts
coded information, such as a binary number, into a noncoded form, such as a decimal form.
For example, one particular type of decoder converts a 4-bit binary code into the appropriate
decimal digit.

Figure 6-4 is a simple illustration of one type of decoder that is used to activate a
T-segment display. Each of the seven segments of the display is connected to an output line

FUNCTIONS OF COMBINATIONAL LOGIC = 205

from the decoder. When a purticular binary code appears on the decoder inputs, the appropri-
ate output lines are activated and light the proper scgments to display the decimal digit corre-
sponding (o the binary code,

»FIGURE 6-4

Binary input

The Data Selection Function
Itiph and the demultipl

Two types of circuits that select data are the P The multi-
plexer, or mux for short, is a logic n.m.uil that switches dlgltai dztla from several input lines
onto a single output line in a specified time seqg Fi a multipl can be rep-
resented by an el ic switch operation that iall cach of the input lines to
the output line. The demultiplexer (demux) is a logic circuit that switches digital data from
one input line to several output lines in a specified time sequence. Essentially, the demux is a
mux in reverse.

i o and demultiplexing are used when data from several sources are to be trans-
mitted over one line to a distant location and redistrit 1 1o several destinati Figure 6-3
illustrates this type of application where digital data from three computers are sent out along a

single line 1o three other computers at another focation.

itvery s s | Binsary dass frvan | Biscary data frmia | Hisry data.trom
g A K e O | e Aty
ot 1 inegu 1 iy 11

Any Ay An

A FIGURE &-5

Switching
sequence
comrol input

206 ®= DIGITAL FUNDAMENTALS

* FIGURE 6-6

In Figure 6-5, hunnydata&vmwmpuwrﬁmoonmmdlodrnulpulhmdumsume
interval Ary and 1o the d that them to p D. Then,
during interval Ar,, the multiplexer switches 1o the input from computer B and the demulti-
plexer switches the output to computer E. During interval Ary, the multiplexer switches to the
input from computer C and the demultiplexer switches the output to computer F.

To summarize, during the first time interval, computer A sends data to computer D. During
the second time interval, computer B sends data to computer E. During the third time interval,
computer C sends data to computer F. After this, the first two computers again communicate
and the sequence repeats. Because the time is divided up among several sets of systems where
each has its turn to send and receive data, this process is called rime division multiplexing
(TDM).

The Storage Function

Storage is a function that is required in most digital systems, and its purpose is to retain
binary data for a period of time. Smmdwﬁcmum‘lfmslmﬂ-mm storage and
some are used for long-term storage. A storage device can “memorize”™ a bit or a group of bits
and retain the mfmnnlmn as long as necessary. Common types of storage devices are flip-

= disks, magnetic tape, and optical disks

flops,
Ds.

Flip-flops The flip-flop is a bistable (two stable states) logic circuit that can store only one
bit at a time, cither a 1 or a 0. The output of a flip-flop indicates which bit it is storing.
A HIGH output indicates that a | is stored and a LOW output indicates that a 0 is stored. Flip-
flops are implemented with logic gates and are covered in Chapter 7.

Registers A register is formed by combining several flip-flops so that groups of bits can be
stored. For example, an 8-bit register is constructed from eight flip-flops. In addition o stor-
ing bits, registers can be used to shift the bits from one position to another within the register
or out of the register to another circuit; therefore, these devices are known as shift registers.
Shift registers are covered in Chapter 9.

The two basic types of shift registers are serial and parallel. The bits are stored in a serial
shift register one at a time, as illustrated in Figure 6-6. A good analogy to the serial shift
register is loading passengers onto a bus single file through the door. They also exit the bus
single file,

Serial bits
o ingwl line

010100

010—~\L 0

Initially, the register contairs oaly imvalid
() || dataorall zeros as shown here.

First bit (1) is shifted serially into the
() || register.

0
0
Second bit {0} is shifted serially into
0 0 register amd first bin is shifted right.
—

| Third bit (1) is shified into register and
el | () || the firs and second bits are shified right

Fourth bit (0 is shifled into register and
—= (=1 =()-F=1 || the firs, second, and third bits are shifted

right. The register new stores all foar bits
and is full.

The bits are stored in a parallel register simultaneously from parallel lines, as shown in
Figure 6-7. For this case, a good analogy is loading passengers on a roller coaster where they
enter all of the cars in parallel.

FUNCTIONS OF COMBINATIONAL LOGIC

= FIGURE &-7 Paralle] bits 0
on input lines.

contzining only pondata zeros,

ofo

14
ﬂ Initially, the register is empay.

All bits are shifted in and
0 1 1] | | stored simultapeously.

Semiconductor M ies Semicond ies are devices typically used for storing
large numbers of bits. In one type of memory. called the read-only memory or ROM, the
binary data are permanently or semipermanently stored and cannot be readily changed. In the
random-access memory or RAM, the binary data are temporarily stored and can be casily
changed. Memories are covered in Chapter 10,

" s M . M

> disk memories are used for mass storage of binary data.
Esumplcs are the so-called floppy disks used in computers and the computer’s internal hard
disk. Magneto-optical disks use laser beams to store and retrieve data. Magnetic tape is still
used in memory applications and for backing up data from other storage devices.

The Counting Function

The ing function is very i in digital systems. There are many types of digital
counters, but their basic purpose is 1o count events represented by changing levels or pulses.
To count, the counter must “remember” the present number so that it can go to the next proper
number in sequence. Therefore, storage capability is an important characteristic of all coun-
ters, and flip-flops are generally used to implement them. Figure 6-8 illustrates the basic idea
of counter operation. Counters are covered in Chapter 8.

Pasallcl
output Wnes | Binary | Binary | Binary | Binary | Binary
)l L oude code cunde e codde
12 3 4 5 jorl | for2 | ogors | ford | ogors
Inpat pulses Sequence of binary codes that represent

4 FIGURE &6-8
llustration of basic counter operation

I SECTION
REVIEW

‘What does a comparator do?

‘What are the four basic arithmetic cperations?
Describe encoding and give an example.
Describe decoding and give an example.

. Explain the basic purpose of g and d
. Name four types of storage devices.

What does a counter do?

Now s wN o

the mumber of input pulses cownted.

= 207

208 = DIGITAL FUNDAMENTALS

BASIC ADDERS

Adders are important not only in computers but also in many types of digital systems in
which ical data are p 1. An und, fing of the basic adder operation is funda-
mental to the study of digital systems. In this section, the half-adder and the full-adder are
introduced.

After completing this section, you should be able 1o

= Describe the function of a half-adder = Draw a half-adder logic diagram

= Describe the function of the full-adder = Draw a full-adder logic diagram using half-
adders ® Implement a full-adder using AND-OR logic

The Half-Adder
Recall the basic rules for binary addition as stated in Chapter 2.
0+0= 0
D+1=1
1+0= 1
1+1=10
The operations are performed by a logic circuit called a hall-adder.

The half-adder accepts two binary digits on its inputs and produces two binary digits
on its outputs, a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6-9.

* FIGURE &-9 T
Logic symbol for a half-adder —lA I [—— Sum
Trprat bars Ohatpuats

— C
arry J

Half-Adder Logic From the operation of the half-adder as stated in Table 61, expressions
can be derived for the sum and the output carry as functions of the inputs. Notice that the out-

put carry (Co,y) is a | only when both A and B are 1s; therefore, C,, can be exp i as the
AND of the input variables,
Cou = AB
» TABLE 6-1 =
Half-adder truth table N
0 0 (] o 8
0 | o 18
1 0 0 18
I 1 1 0 ﬁ
B
£ = wm |
Cie = tasipul casry

Aand B = input vurisbics iopetands)

FUNCTIONS OF COMBINATIONAL LOGIC = 209

Now, observe that the sum output (E) is a | only if the input variables, A and B, are not equal.
be

‘The sum can therefc d as the excl OR of the input variables.
L=A@B Equation 6-2
From Equations 6-1 and 6-2, the logic impl jon required for the half-adder functi

can be developed. The output carry is produced with an AND gate with A and B on the inputs,
and the sum output is generaled with an exclusive-OR gate, as shown in Figure 6-10. Remem-
ber that the exclusive-OR is implemented with AND gates, an OR gate, and inverters.

= FIGURE 6-10
Half-adder logic diagram

The Full-Adder
‘The second category of adder is the full-adder.

The full-adder accepts two input bits and an input carry and generates a sum output
and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an
input carry. A logic symbol for a full-adder is shown in Figure 6-11, and the truth table in
Table 6-2 shows the operation of a full-adder.

» FIGURE &-11

z
Logic symbol for a full-adder Inlr-'u [—14 £ Sum
L N
Couq [Dhatpat carry
Iepat carry —{ ¢,

= TABLE -2
Full-adder truth table

- |

[R — I —
- =2 =c =0
_-—— = T2 S
-2 =2 ==

€y = iput cairy. scxmetiones designated as C7

€ = Okl CaTy, sedctimes designated as £

L= sum * ¥
Aand put varables (operasds)

Full-Adder Logic The full-adder must add the two input bits and the input carry. From
the half-adder you know that the sum of the input bits A and B is the exclusive-OR of

210 = DIGITAL FUNDAMENTALS

Equation 6-3

C,

those two variables, A @ B. For the input carry () to be added to the input bits, it must be
exclusive-ORed with A @B B, yielding the equation for the sum output of the full-adder.

L=A@B®C,

This means that to implement the full-adder sum function, two 2-input exclusive-
OR gates can be used. The first must generate the term A @ B, and the sccond has as
its inputs the output of the first XOR gate and the input carry, as illustrated in
Figure 6-12(a).

;' A@ R — Co=AB +{A @ B)C,
. E=iA@ &,

(a) Logic required 1o form the sum of three bits (k) Complete logic circuit for a full-adder (each half-sdder is enclossd

by a shaded area)

A FIGURE §-12
Full-adder logic

The output carry is a 1 when both inputs to the first XOR gate are 15 or when both inputs
10 the second XOR gate are 1s. You can verify this fact by studying Table 6-2. The output
carry of the full-adder is therefore produced by the inputs A ANDed with B and
A (® B ANDed with Cj,. These two terms are ORed, as expressed in Equation 6-4. This func-
tion is implemented and combined with the sum logic to form a complete full-adder circuit, as
shown in Figure 6-4(b).

Equation 6—4 Cou = AB + (A D BIC,,
Notice in Figure 6-12(b) there are two half-adders, connected as shown in the block dia-
gram of Figure 6-13(a), with their cutput carries ORed. The logic symbol shown in Figure
6-13(b) will ily be used to ref the full-adder.
Half-adder Half-adder
z G
A—]A b BT I—--—.s:gméu'_,
H—B Couf B o
Input A 4§ I z
e A B BIC, —a N
— &8
carry, C, (.'_ [
Al D—v{)ul'pul) Co s
AB = (AS BIC,
fa) Amangement of two half-adders w oo a full-adder (b1 Full-sdder logic symbol

4 FIGURE 6-13
Full-adder implemented with half-adden:

FUNCTIONS OF COMBINATIONAL LOGIC = 211

I EXAMPLE 6-13
For each of the three full-adders in Figure 6-14, determine the outputs for the inputs

shown,
b3 £ 3
I—1A —A A
El— El— I

n— 8 | — 8 | — B

Con [L) Cons
01—, 1 &, 1 —C.
fa) b i€}
. FIGURE &-14

Solution (a) The input bits are A = 1, B = 0, and C,, = 0.
1 + 0+ 0= 1with no carry
Therefore, E = 1 and C, = 0.
(b) The inputhits areA = 1, 8= 1, and C;, = 0
1+1+0=0withacarryofl
Therefore, E=0and €, = 1.
(¢} The input bits are A = 1, 8= 0,and C, = 1.
1+ 0+ 1= 0withacamy of |
Therefore, £ = 0 and Cyp = 1.

Supplamentary Problem What are the full-adder outputs forA = 1, B = 1, and G, = 17

SECTON &2 1. Determine the wm (£) and the output carry (C,..) of a half-adder for each set of input

REVIEW Bits:
Annwers are at the end of

[.}. 01 (b)o0 (c) 10 (d) 11
2. A full-adder has C,, = 1. What are the sum (L) and the output camy (C,.,) when
A=1landB =17

the chapter.

[6=3 | PARALLEL BINARY ADDERS

Two or more full-adders are connected to form parallel binary adders. In this section, you
will learn the basic operation of this type of adder and its associated input and output func-
tions.

After completing this section, you should be able 10

& Use full-adders to implement a paralle] binary adder = Explain the addition process in a
parallel binary adder ® Use the truth table for a 4-bit parallel adder = Apply the
TALSE3A and the 7415283 for the addition of two 4-bit numbers = Expand the 4-bit adder
to accommodate 8-bit or 16-bit addition

212 w DIGITAL FUNDAMENTALS

As you saw in Section 6-2, a single full-adder is capable of adding two 1-bit numbers and
an input carry. To add binary numbers with more than one bit, additional full-adders must be
used. When one binary number is added to another, each column generates a sum bit and a 1
or () carry bit to the next column to the left, as illustrated here with 2-bit numbers.

— Carry bit from right column

+00

1041
In this case, the "l‘
carry bit from |
second column :

becomes a sum bit. ——

To add two binary numbers, a full-adder is required for each bit in the numbers. So for
2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so on. The
carry output of each adder is connected to the carry input of the next higher-order adder, as
shown in Figure 615 for a 2-bit adder. Notice that either a half-adder can be used for the least
significant position or the carry input of a full-adder can be made 0 (grounded) because there
is no carry input to the least significant bit position.

» FIGURE 6-15 As By A B
General forma. addition
A 252 acklac of two 2-bit pumsbers:
[
A BC, A B G,
Cu I Cow I
MSE) L, I X, (LSB)

In Figure 6-15 the least significant bits (LSB) of the two numbers are represented by A,
and B, The next higher-order bits are represented by A; and B,. The three sum bits are £, I,
and E;. Notice that the output carry from the left-most full-adder becomes the most significant
bit (MSB) in the sum, E;.

|EXRMPI.E 6-2
Determine the sum generated by the 3-bit parallel adder in Figure 6-16 and show the inter-

mediate carmies when the binary numbers 101 and 011 are being added.

» FIGURE 6-16 L . 13

]
|
i

A sc) | [a rc, A BCy

FUNCTIONS OF COMBINATIONAL LOGIC = 213

Solution The L5Bs of the two numbers are added in the right-most full-adder. The sum bits and the
intermediate carries are indicated in Figure 6-16.

Supplementary Problem What are the sum outputs when 111 and 101 are added by the 3-bit parallel adder?

" Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with four
full-adder stages as shown in Figure 6-17. Again. the LSBs (4, and B)) in each number being
added go into the right-most full-adder; the higher-order bits are applied as shown to the suc-
cessively higher-order adiers, with the MSBs (A, and B,) in each number being applied to the
left-most full-adder. The carry output of each adder is connected to the carry input of the next
higher-order adder as indicated. These are called internal carries.

z
J— [—
A B
P o Hinary 2 ha | 3 A4-hit
number 4 | ——— 3 3 [|sum
— G —]4 4 —
—1
1 B G Binary | — 2 | g
IMSH) (LSH) mmber § | —— 3
Cos X 3 -
y— | Imput Cy G Chutpat
. CATY cary
{a) Block disgram (b} Logic symbol

A FIGURE 6-17
A 4-bit parallel adder

In keeping with most manufaciurers’ data sheets, the input labelled Cy, is the input carry to
the least significant bit adder; Cy, in the case of four bits, is the output carry of the most sig-
nificant bit adder; and E, (LSB) through E, (MSB) are the sum outputs. The logic symbol is
shown in Figure 6-17(b).

In terms of the method used to handle carries in a parallel adder, there are two types: the
ripple carry adder and the carry look-ahead adder. A ripple carry adder is one in which the
carry output of each full-adder is connected to the carry input of the next higher-order stage
(a stage is one full-adder). The sum and the output carry of any stage cannot be produced until
the input carry occurs; this causes a time delay in the addition process. The carry propagation
delay for each full-adder is the time from the application of the input carry until the output
carry ocours, assuming that the A and B inputs are already present.

A method of speeding up the addition process by eliminating this ripple carry delay is
called Jook-ahead carry addition. The look-ahead carry adder anticipates the output camry of
each stage, and based on the input bits of each stape, produces the output carry by either carry
2 of carry propag

Carry generation occurs when an output carry is produced (generated) intemally by the
full-adder. A camry is generated only when both input bits are 1s. The generated camy, C,. is
expressed as the AND function of the two input bits, A and B.

C,=AB

214 m DIGITAL FUNDAMENTALS

| EXAMPLE 6-3

Solution

Supplementary Problem

Carry propagation occurs when the input carry is rippled to become the output carry. An
input carry may be propagated by the full-adder when either or both of the input bits are Is.
The propagated carry, C. is expressed as the OR function of the input bits.

C,=A+8B

Truth Table for a 4-Bit Parallel Adder

Table 63 is the truth table for a 4-bit adder, On some data sheets, truth tables may be called
Sunction tables or functional truth tables. The subscript n represents the adder bits and can be
1, 2. 3, or 4 for the 4-bit adder. C,_, is the carry from the previous adder. Carries C, C, and
€y are generated internally. Cy is an external carry input and C is an output. Example 6-3
illustrates how to use Table 6-3,

> TABLE 6-3

- e DS 2
_—a D e e D=
~——=2-=== [

Use the 4-bit parallel adder truth table (Table 6-3) to find the sum and output carry for the
addition of the following two 4-bit numbers if the input carry (€,) is 0

A, = 1100 and B.8,8.8, = 1100

Forn=1: A, =08, =0,and C,.; =1 From the Ist row of the table,
E =0 and C, =0

Forn=2: A;=1(, B, =0,and C,_, = 0. From the 1st row of the table,
E=0 and Ci=0

Forn=3: Ay= |, 8y =1, and C,_, = (. From the th row of the table,
E,=0 and C =1

Forn=4: A, =1,B,= 1,and C,_, = 1. From the last row of the table,
L=1 and C,=1

€ becomes the output carry; the sum of 1100 and 1100 is 11000,

Use the truth table (Table 6-3) to find the result of adding the binary numbers 1011 and
10140,

FUNCTIONS OF COMEBINATIONAL LOGIC = 215

Examples of 4-bit parallel adders that are available in IC form are the 7T4LS83A and the
T4L5283 low-power Schottky TTL devices. The 74L583A and the 74L5283 are functionally
identical to each other but not pin compatible; that is, the pin numbers for the inputs and out-
puts are different due to different power and ground pin connections. For the 74LS83A, Ve is
pin 5 and ground is pin 12 on llle]b-pm paclmge For the 7418283, Vi is pin 16 and ground
is pin 8, which is a more [in diag; and logic symbols for both of
these devices are shown, with pin numbcrs in parentheses on the logic symbols, in
Figure 6-18.

-]

Vee Vee
B4 L4 C4 COGNDBI Al X1
[ie] [15] (3] (73] [13] [17) [i] [} (5) (16}
i (10} f ¥ 5 1 b
L MLSEIA ® 1, . [E0 A
3 A) i3 3 9 a8 1y 4)
oy 3h | e oy | T
3 1 1 — —_— LA
0 B B 3] (5] (o] (2] 18] sl 2 o 2
AV D3 AD B3 Vg 12 B2 A2 un |, 3 ® |, P RLEN
|, JE |, P LI
Voo B3 A E3 A4 B4 X3 G4 [P us |5 8
[i6] [15] [1a] [v3] [12] [in] i) [%] us |, 1y 4
ST g an fe, P IL] @ e P IR}
o 12)
njBjsoIaniayn)
EI K2 A2 XI Al HI COGNIDY GRD GND
{a) Pin disgrams () T4LERIA () TALSZHI

A FIGURE 6-18

“Adder Expansion

The 4-bit paralle]l adder can be expanded to handle the addition of two 8-bit numbers by using
two 4-bit adders. The carry input of the low-order adder (Cy) is connected to ground because
there is no carry into the least significant bit position, and the carry output of the low-order
adder is connected 1o the carry input of the high-order adder, as shown in Figure 6-19(a). This
process is known as cascading. Notice that, in this case, the output carry is designated Cy
because it is generated from the eighth bit position. The low-order adder is the one that adds
the lower or less significant four bits in the numbers, and the high-order adder is the one that
adds the higher or more significant four bits in the 8-bit numbers,

Similarly, four 4-bit adders can be cascaded to handle two 16-bit numbers as shown in
Figure 6~19(b). Notice that the output carry is designated Cy,; because it is generated from the
sixteenth bit position.

216 = DIGITAL FUNDAMENTALS

B 8 B AN

EIEII

W R Al

5

b} Cascading of four 4-bit adders o form a 16-bit adder
A FIGURE 6-19

I EXAMPLE 6-4
Show how two T4LSE3A adders can be connected to form an 8-bit parallel adder. Show

output bits for the following 8-bit input numbers:
Solution A Adglad At = 10111001 and ByB,B.B.B.B.B,8, = 10011110

= FIGURE 4-20
E z
p A £ I_I‘I_::J_ I
LL] LL1]
0 —=2 | 2
|: £V I ,LA 0 [ELI B
Wy i o) 1l y |-
| H | B
z Iy L L@
3 3=
P | iy 1 *Tas
@ |, i 4 PRSI 1 T e 40
T | e
3| 0 3
4 L JJ
i14)
[

High-orler adder

FUNCTIONS OF COMBINATIONAL LOGIC = 217

Two T4LSE3A 4-bit parallel adders are used to implement the 8-bit adder. The only con-
nection between the two T4LSE3As is the carry output (pin 14) of the low-order adder to
the carry input (pin 13) of the high-order adder. as shown in Figure 6-20. Pin 13 of the
Tow-order adder is grounded (no carry input).

Supplementary Problem Use TALS283 adders to implement a 12-bit parallel adder.

" Application Example
Vee
5 m Adder Modake
:E e - Position Adder Moddale
3
x -
YES O———————0——] 4 x
B ¥ :
;L YES
8O o Cou o
(v | i wen WA I
YESO—— 2 w o Dol
Full-adder | i T-segment ' '
RO 1 3 decoder _M.‘W'F ' '
Noo——— I3 2 *| B WA =
L S [= W
YES | b 7
' — 2
Com Cs ey
Noo—— || Bl o5
—— Paraliel adder |
YES Fulb-adder 2 =
b —Oe) i YES logic
NO‘o——
z
Vs AR ¥
—0——=0 I b 1
01— 2 NO
NO 0—\ o)
A 1 BCD FW\'—,\Mr
YES S b o r-l
- T-segment | V¥V
ST 1\ 3 decoder YW N
0 : | M T —
Switches Sin8 = FAMA
4
I G,

_ Parallel adder 2

A FIGURE 6=-21

218 = DIGITAL FUNDAMENTALS

An example of full-adder and parallel adder application is a simple voting system that can be
used to simultaneously provide the number of “yes™ votes and the number of “no” votes. For
example, this type of system can be used where a group of people are assembled and there is a
need for i di g opinions (for or against), making decisions, or voting on
certain issues or other matters,

In its simplest form, the system includes a switch for “yes" or “no” selection at each posi-
tion in the assembly and a digital display for the number of yes votes and one for the number
of no votes. The basic system is shown in Figure 6—"1 fnr a &posmnn setup, but it can be
expanded to any number of positions with addit p Jules and additional
paralle] adder and display circuits,

In Figure 6-21 each full-adder can produce the sum of up to three votes. The sum and out-
put carry of each full-adder then goes to the two lower-order inputs of a parallel binary adder.
The two higher-order inputs of the parallel adder are connected to ground (0) because there is
never a case where the binary input exceeds 0011 (decimal 3). For this basic 6-position
system, the outputs of the pamllcl adder go o a BCD-to-7-segment decoder that drives the
T-seg display. As i dditional circuits must be included when the system is
expanded.

The resistors from the inputs of each full-adder 1o ground assure that each input is LOW
when the switch is in the neutral position (CMOS logic is used). When a switch is moved to
the “yes” or to the “no™ position, a HIGH level (Viy) is applied to the associated full-adder
input,

| Rl 1, Two 4-bit numbers (1101 and 1011) are applied to a 4-bit parallel adder. The input carry

i 1. Determine the sum (£) and the output carry.
2. How many 74L5283 adders would be required to add two binary numbers each repre-
senting decimal numbers up through 100057

[6=4 | compArATORS

The basic function of a comparator is 1o compare the magnitudes of two binary quantities to

determine the relationship of those quantities. In its simplest form, & comparator circuit
determines whether two numbers are equal.

After completing this section, you should be able to

= Use the exclusive-OR gate as a basic comparator ® Analyze the internal logic of a mag-
nitude comparator that has hoth equality and inequality outputs ® Apply the 74HCES com-
parator to compare the magnitudes of two 4-bit numbers = Cascade T4HCESs 1o expand a
comparator to eight or more hits

Equality
As you leamed in Chapter 3, the exclusive-OR gate can be used as a basic comparator because
its output is a 1 if the two input bits are not equal and a 0 if the input bits are equal.
Figure 6-22 shows the exclusive-OR gate as a 2-hit comparator.

FUNCTIONS OF COMBINATIONAL LOGIC = 219

0 1

":}D_,, The input bits are equal, ":}D—| The input bits are ot eqasl.
0 I ;
::D_' The input bits are ot eqaal. l:}D—n The input bits are dqual.

4 FIGURE 6-22
Baulc comparator operation

In order to parc binary two bits cach, an additional exclusive-OR
gate is necessary. The two least significant bits (LSBs) of the two numbers are compared by
gate G, and the two most significant bits (MSBs) are compared by gate G, as shown in
Figure 6-23. If the two numbers are equal, their corresponding bits are the same, and the out-
put of each exclusive-OR gate is a 0. If the corresponding sets of bits are not equal, a 1 occurs
on that exclusive-OR gate output.

> FIGURE 6-23 Lsite 2:]B .>
s 3D

Cheneral Toamat: Bisery pumber A+ A4,
Bitiary number 8« 8,5y

Dt
HIGH indicutes eqaality,

In order to produce a single output indicating an equality or inequality of two numbers, two
inverters and an AND gate can be used, as shown in Figure 6-23. The output of each exciu-
sive-OR gate is inverted and applied to the AND gate input. When the two input bits for each
exclusive-OR are equal, the corresponding bits of the numbers are equal, producing a 1 on
both inputs to the AND gate and thus a | on the output. When the two numbers are not equal,
one or both sets of comesponding bits are unequal, and a 0 appears on at least one input to the
AND gate to produce a () on its output. Thus, the output of the AND gate indicates equality (1)
ot inequality (0) of the two numbers.

Example 65 illustrates this operation for two specific cases. The exclusive-OR gate and
inverter are replaced by an exclusive-NOR symbol.

I EXAMPLE 6-5
[Apply each of the following sets of binary numbers to the comparator inputs in Figure

624, and determine the output by following the logic levels through the circuit.
(a) 10and 10 (b) 1l and 10

Ay=0 | V=t 0
Fy=il f =1

L = equal 0 ot el
A= i A=) |
8 =1 B =1
{u) 1)

4 FIGURE 6-24

220 w DIGITAL FUNDAMENTALS

Selution

Supplementary Problem

I EXAMPLE 6-6

(a) The output is 1 for inputs 10 and 10, as shown in Figure 6~24(a).
(b) The cutput is 0 for inputs 11 and 10, as shown in Figure 6-24(b).

Repeat the process for binary inputs of 01 and 10

As you know from Chapter 3, the basic comparator can be expanded to any number of bits,
The AND gate sets the condition that all corresponding bits of the two numbers must be equal
if the two numbers themselves are equal.

Inequality
In addition o the equality output, muny IC comparators provide additional outputs that indi-
cate which of the two binary numbers being compared is the larger. That is, there is an output
that indicates when number A is greater than number B (A > B) and an output that indicates
when number A is less than number B (4 < B), as shown in the logic symbol for a 4-bit
comparator in Figure 6-25,

» FIGURE 6-25

_— coMmP

Logic ymbol for a 4-bit Ag—{0

comparator, A=t 1,
Ay — AnHE fee
A—1

Al
dy———
By — 8 AcH
#y e}
By ——3
To b ine an inequality of binary numbers 4 and B, you first examine the highest-order
bit in each number. The following conditions are ibl

I. TF Ay = 1 and By = 0, number A is greater than number 8.
2. I Ay = Oand By = |, number A is less than number 8.
3. [F Ay = By, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general
procedure used in a comparator is t check for an inequality in a bit position, starting with the
highest-order bits (M5Bs). When such an inequality is found, the relationship of the two
numbers is established, and any other i lities in | rder bit positions must be ignored
because it is possible for an opposite indication w occur; the highesi-order indication must
take precedence.

Determine the A = B, A > B, and A < 8 outputs for the input numbers shown on the com-
parator in Figure 6-26,

FUNCTIONS OF COMBINATIONAL LOGIC = 221

= FIGURE 6-26

COMP

u—|n
| —]A
| —y J AR |——
i—-I_3

A=§ —
| ——q0
= |y A<#t—
) e
n—3J

Solution The number on the A inputs is 0110 and the number on the B inputs is 0011, The
A > B output is HIGH and the other outputs ares LOW,

Supplementary Problem What are the comparator outputs when Ayd.A A, = 1001 and B.B.8 8, = 10107

A 4-BIT MAGNITUDE COMPARATOR

The T4HCES is a P that is also available in other IC families. The pin diagram and
logic symbol are shown in Figure 6-27, Notice that this device has all the inputs and outputs of
the generalized comparator previously discussed and. in addition, has three cascading inputs:
A< B, A= B, A > B. These inputs allow several comparators to be cascaded for comparison of
any number of bits greater than four. To expand the comparator, the A < B,A = B,andA = B
outputs of the lower-order comparator are connected to the corresponding cascading inputs of
the next higher-order comy The lowest-order comy must have a HIGH on the A = B
input and LOWs onthe A < Band A > B inputs.

» FIGURE 6-27 an [cowr
¥ {12}
B3] 10 16] Vo (13} A
A<B,0]2 15 [1 A3 as |,
A=8_0]3 14] B2 P R 1)
- 3 [T
A>B_[]4 13]] A2 . e A=H A=H =l
AxBylls 12[1 a1 r :"‘” A<l
i}
A=B,[l6 11] Bi i
A<l [l 7 w0l Ao 4 B
ily
GND [} & o[l B0 — Vel 16), GNDI(S)

ta) Fin diagram ih) Logic symbol

222 m FUNCTIONS OF COMBINATIONAL LOGIC

I EXAMPLE 6-7

Use 74HCES to compare the magnitudes of two 8-bit numbers. Show the

with proper i

Solution Two TAHC85s are required to compare two 8-bit numbers. They are i as shown in

* FIGURE 6-28

Figure 6-28, in a cascaded arrangement.

5 A
A Bk : L5By o< COMP “i'f‘_u comp
wiing two T4HC8S: A = | A
Atpmmee] [Ao S
Ap 3 A1y
—A=B A>B A>B As>B}p——ro
+5V A=B A=DH A=l A=g -—IDH!pdl\
b A=<B A<B A<B A<B —J
8, o B0
B) N—
o B B—1{ [®
it 3 B3
—_— TAHCHS TEHCRS
Supplementary Problem Expand the circuit in Figure 6-28 to a 16-bit comparator.

SECTION 6-4
REVIEW

6-5 DECODERS

. The binary numbers A = 1011 and B = 1010 are applied to the inputs of a T4HCES5.
Determine the outputs.

. The binary numbers A = 11001011 and B = 11010100 are applied to the 8-bit com-
parator in Figure 6-28. Determine the states of output pins 3, 6, and 7 on each 74HCB5.

5

Fad

The basic function of a decoder is 1o detect the of a speci ination of bits
{code) on its inputs and to indicate the presence of that code by a specified output level. In
its general form, a decoder has » input lines to handle # bits and from one to 2% output lines
to indicate the presence of one or maore n-bit combinations, In this section, several decoders
are introduced. The basic principles can be ded to other types of decoders,

After completing this section, vou should be able o

® Define decoder ® Design a logic circuit to decode any combination of bits

® Describe the 74HC| 54 binary-to-decimal decoder ® Describe the 74HC42 BCD-o-dec-
imal decoder ® Expand decoders to accommaodate larger numbers of bits in a code

= Describe the 741547 BCD-10-7-segment decoder @ Discuss zero suppression in
7-segment displays ® Apply decoders 10 specific applications

FUNCTIONS OF COMBINATIONAL LOGIC

The Basic Binary Decoder

Suppose, you need to determine when a binary 1001 occurs on the inputs of a digital circuit,
An AND gate can be used as the basic decoding element because it produces a HIGH output
ooly when all of its inputs are HIGH. Thercfore, you must make sure that all of the inputs to
the AND gate are HIGH when the binary aumber 1001 occurs; this can be done by inverting
the two middle bits (the 0)s), as shown in Figure 6-29.

4 iLAHY

Xaadad s,

(5] b}

4 FIGURE 6-29

The logic equation for the decoder of Figure 6-2%a) is developed as illustrated in Figure
6-29b). You should verify that the output is 0 except when Ay = 1. 4, = 0, A; = 0, and
Az = | are applied to the inputs. A, is the LSB and A, is the MSB. fn the representation of a
binary number or other weighted code in this book, the LSB is the right-most bit in a horizon-
tal arrangement and the top-most bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used in place of the AND gate in Figure 6-29, a LOW output will indi-
cate the presence of the proper binary code, which is 1001 in this case.

| MPLE 6-8
Determine the logic required to decode the binary number 1011 by producing a HIGH

fevel on the outpat.,

= 223

Solution The decoding function can be formed by complementing only the variables that appear as

0 in the: desired binary number, as follows:
X = A Ay (i

This function can be impl d by ing the trae { p

variables Ag, A, and A, directly to the inputs of an AND gate, and inverting the variable A;

before applying it to the AND gate input, The decoding togic is shown in Figure 6-30),

FIGURF &-30

Supplemantary Problem Develop the logic required to detect the binary code 10010 and produce an active-LOW

output.

224 m DIGITAL FUNDAMENTALS

The 4-Bit Decoder

In order to decode all possible combinations of four bits, sixteen decoding gates are required
(2° = 16). This type of decoder is commonly called either a 4-line-to- I6-line decoder because
there are four inputs and sixteen outputs or a I-of-16 decoder because for any given code on
the inputs, one of the sixteen outputs is activated. A list of the sixteen hinary codes and their
corresponding decoding functions is given in Table 6.

If an active-LOW output is required for each decoded number, the entire decoder can be
implemented with NAND gates and inverters. In order to decode each of the sixteen binary
codles, sixteen NAND gates are required (AND gates can be used 1o produce active-HIGH

outputs).

T TABLE 6-4

DECIMAL | BIN; DECODING |

DIGIT o | FUNCTION |

0 000 00 AAAA,
1 0RO OS] AsdaAiAy
2 00 1 0| Adwd,
3 00] 1 Al Ay
4
P

(1]

1510430 Aoy
b i B AAAN,
1 10 AdA A,
B el Aty
0 00| A
1 AdAA Ay
0 | Adsy
L[Al
[T 1 S O B v v
1 Aty
0 AsAd,
| AdA Ay

L TR SRR T S0 Ty R Ly e S
e e e e L e i
e e g M et e L g e] S e

e e e e S e

0

BAREMpler, £ AN st i A R

* FIGURE 6-31 BINIDEC A logic symbol for a 4-line-to-16-line (1-0f-16) decoder with
op—— active-LOW outputs is shown in Figure 6-31. The BIN/DEC label
—— indicates that a binary input makes the corresponding decimal output
P—— active. The input labels 8, 4, 2, and | represent the binary weights of
b—— the input bits (2°2%2'2"%).

[[]]

e bt —

FUNCTIONS OF COMBINATIONAL LOGIC = 225

A 1-OF-16 DECODER

‘The 74HC154 is a good example of an IC decoder. The logic symbol is shown in Figure 6-32.

There is an enable function (EN) provided on this device, which is implemented with a NOR
gate used as a negative-AND. A LOW level on each chip select input, CS, and CS,, is required
in order to make the enable gate output (EN) HIGH. The enable gate output is connected to an
input of each NAND gate in the decoder, so it must be HIGH for the NAND gates 1o be
enabled. If the enable gate is not activated by a LOW on both inputs, then all sixteen decoder
outputs (¥) will be HIGH nk.mlilu-. of the states of the four input variables, Aq. Ay, Az

and A;.

» FIGURE 6=32
a3 Xy

|

21y
120y

E

07
[ERLLE 15pIL
r_\ A9 J BN

b Logic symbol

I EXAMPLE 6-9
A certain application requires that a S-bit number be decoded. Use T4HC 154 decoders to

implement the logic. The binary number is represented by the format Agdsa4,A,

Solution Since the TAHC 154 can handle only four bits, two decoders must be used to decode five
bits. The fifth bit, Ay, is connected to the chip select inputs, C5; and C5s, of one decoder,
and A, is connected to the C.‘)‘ and f_b- inputs of the other decoder, as shown in Figure
6-33. When the decimal number is 15 or less, A, = 0, and the low-order decoder is
enabled and the high-order decoder is disabled. When the decimal number is greater than
15,44 = 1 50 A, = 0, and the high-order decoder is enabled and the low-order decoder is
disabled.

226 m DIGITAL FUNDAMENTALS

FIGURE 4-33

Supplamentary Problem

BINDEC | BINDEC
(P i High-omer

| op—— 0 | D= 16
| 11 Lp— 17
T 2 1p—— 18
ip—— 1 ip— 19
i ‘ | 4 4 sp— 0
l { ip— 5 Sp—2
Ay 11 6p— & 1 ah— 12
1, i 2 1p-— 7 1 Tp—u
1: | 4 fp— % 4 sh—
1, ——e—{§ ap— o -— -8 [
10— 26
np—2
12p— 2%
B3p—m
= 14— 30
Lg% o Bp

TAHCI54

Determine the output in Figure 6-33 that is activated for the binary input 10110

Application Example

Decoders are used in many types of applicat One le is in for inp
put selection as depicted in the general diagram of Figure 6-34,

Computers must communicate with a variety of external devices called peripherals by
sending and/or receiving data through what is known as input/output (VO) ports. These exter-
nal devices include printers, modems, scanners, external disk drives, keyboard, video moni-
tors, and other computers. As indicated in Figure 6-34, a decoder is used to select the /O port
as determined by the computer so that data can be sent or received from a specific external
device.

Each IO port has 2 number, called an address, which uniguely identifies it. When the com-
puter wants to communicate with a panticular device, it issues the appropriate address code for
the O port to which that particular device is connected. This binary port address is decoded
and the appropriate decoder output is activated to enable the I'O port,

As shown in Figure 6-34, binary data are d within the ip on a data bus,
which is a set of parallel lines. For example, an 8-bit bus consists of eight parallel lines that
can carry one byte of data at a time. The data bus goes to all of the /O ports, but any data
coming in or going out will only pass through the port that is enabled by the port address
decoder.

FUNCTIONS OF COMBINATIONAL LOGIC = 227

= FIGURE &-34 Input/Cutpul
parts
Controlier Printer
- Data bus o
B EN
Keyboard
[+
—— O EN
BINMEC | Monitor
u Vo
p—
2p ———q EN
ip-
ap—_ Mixtem
P 1| Lo
Ay i
e S .
address [A2 | AP | these dua Scaner
) 9p- | + Vo
g 10k lines wre cither |
unused or L o
”1 P~ [connectin '
120 | aher 10 it dit
3P | pons 1o
9 [1sb-/
110 request —e—j EN EN
Port address decoder Mbig-

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder convents each BCD code (8421 code) into one of ten possible
decimal digit indications. It is frequently referred as a 4-line-ro-10-line decoder or a [-of-10
decoder.

* TABLE 6-5

DECODING
FUNCTION

DECIMAL
DIGIT

BCD CODE
A, Ay

Ay Ag

0 Q135050 o
1 075D |
Z LU 1 0
3 0 0 1 1
4 o 1 B 2
5 0 1 0 i
6 0 1 1 0
7 o 1 1 1
5 1 0 0 0
9 1 [et 1

228 w DIGITAL FUNDAMENTALS

I EXAMPLE 6-10

The method of implementation is the same as for the 1-of-16 decoder previously discussed,
exczpt that only ten decoding gates are required because the BCD code represents only the ten
decimal digits O through 9. A list of the ten BCD codes and their corresponding decoding
functions is given in Table 6-5. Each of these decoding functions is implemented with NAND
gates to provide active-LOW ouwrputs. If an active-HIGH output is required, AND gates are
used for decoding. The logic is identical to that of the first ten decoding gates in the 1-of-16
decoder (see Table 6-4).

The 74HC42 is an integrated circuit BCD-to-decimal decoder. The logic symbaol is shown
in Figure 6-35. If the input waveforms in Figure 6-36(a) are applied to the inputs of the
T4HCA42, show the output waveforms,

[# i Iy I [
BCIVDEC | ¢y A M
0 [#3] Ao —_— . —
tp—=] Y ! —
(3) Ay | i H
2p— Irputs.] 1 1
I] i T
L 3 2 T IO N - 1 —
5] i H
3 4 r:] w A | I i]
1 sh l-;] 1 _.IL__ e
& fn—-ﬁq: | o
b 1 1 1} 1
? (110} I :— Il JI_
33:": | J— i t | | |
(1] + — T T T T T T
! L & i H
7aHCa2 2 LI v 0]
3 L] Pt :
4 FIGURE §-35 T T
Outpars 4 L 1 ;
s . i
| H
6]]
7 L :
s L
[1

Solution

Supplementary Problem

A FIGURE 6-36

The output wavelorms are shown in Figure 6-36(b). As you can see, the inputs are
sequenced through the BCD for digits 0 through 9. The output waveforms in the timing
diagram indicate that sequence.

Construct a timing diagram showing input and output waveforms for the case where the
binary inputs sequence through the decimal numbers as follows: 0,2, 4, 6,8,1,3, 5, and 9.

FUNCTIONS OF COMBINATIONAL LOGIC

The BCD-to-7-Segment Decoder

As you learned in the system application of Chapter 4, the BCD-t0-7-segment decoder accepts
the BCD code on its inputs and provides outputs to drive T-segment display devices o pro-
duce a decimal readout. The logic diag for a basic 7 t decoder is shown in
Figure 6-37.

Ay —] 1 '
BCD | A ——2
inpu | 4y 4 ap— Tesegrment
. . eb— | dsplay device
b — N
gp—

A FIGURE 6-37

= 229

A BCD-TO-7-SEGMENT.- DECODER/DRIVER

The 74L547 is an example of an IC device that decodes a BCD input and drives a
7-segment display. In addition to its decoding and segment drive capability, the 741847 has
several additional features as indicated by the LT, RE/, BYRBO functions in the logic symbol
of Figure 6-38. As indicated by the bubbles on the logic symbol, all of the outputs (a through
&) are active-LOW as are the LT (lamp test), RBJ (ripple blanking input), and BIREC (blank-
ing input/ripple blanking output) functions. The outputs can drive a common-anode 7-segment
display directly. Recall that T-segment displays were discussed in Chapter 4,

> FIGURE &-38 Ve
116)
BCDT-se5)
BUREO P BURHO
13
@ 1, “p :u:
(LTI b p——
Voo I BCD rub r iy
- mputs 4 i
16| |13 © a [10]
) @)
3 M i
L A =
=T (14)
RBI ——— RBI P
(L.1]

B C LT RBI D A GND
BURBD e
{a) Pin duagram i} Logic symbol

230 ® DIGITAL FUNDAMENTALS

In addition to decoding a BCD input and producing the appropriate 7-segment outputs, the
741547 has lamp test and zero suppression capabulny
Lamp Test When a LOW is applicd to the LT input and the BIRBO is HIGH, all of the 7

segments in the display are tumed on. Lamp test is used to verify that no segments are bumed
out.

Zero Suppression Zero don is a feature used for multidigit displays to blank out
unnecessary zeros. For c:amplc. in a 6-digit display the number 6.4 may be displayed as
006.400 if the zeros are not blanked out. Blanking the zeros at the front of a number is called
leading zero suppression and blanking the zeros at the back of the number is called trailing
zero suppression. Keep in mind that only nonessential zeros are blanked. With zero suppres-
sion, the number 030.080 will be displayed as 30.08 (the essential zeros remain).

Zero suppression in the 741547 is accomplished using the RBI and BIRBO functions. RBI
is the ripple blanking input and RBO is the ripple blanking output on the 74LS47; these are
used for zero SMI'C&SIDII B is the blanking input that shares the same pin with RRD‘ in other
words, the BI/RBO pin can be used as an input or an output. When used as a Bl (blanking
input), all segment outputs are HIGH (nonactive) when BI is LOW, which overrides all other
inputs, The BI function is not part of the zero suppression capability of the device.

o [N [o000 0 ool 1 Lond
[A L o |11 do |11 o |11
= |mor B4z T O843 RR T KB 410 MIT R4 210
TALS4T TaLSaT TALSAT TALSAT

d ¢ b & BIRED § S ¢ & ¢ b o RUERD 2 ¢ b s RURAC 8 f o d v b 2 RIRBO

T T YT rm‘” T

Blanked Blanked
{a) Miustration of leading zero suppression

THLS4T

p e d e b oa mEND i f e d

T |

-——l

.
dp Dlanked Blanked
ih) THustration of trailing ser suppression

A FIGURE 6-39

FUNCTIONS OF COMBINATIONAL LOGIC = 231

Al of the segment outputs of the decoder are nonactive (HIGH) if a zero code (0000) is on
its BCD inputs and if its RB/ is LOW, This causes the display to be blank and produces a
LOW RBO.

The logic diagram in Figure 6-3%a) illustrates leading zero suppression for a whole num-

inputs because the RBI of the most-significant decoder is made LOW by connecting it 1o
ground. The KB of each decoder is connected to the BB of the next lowest-order decoder so
that all zeros to the left of the first nonzero digit are blanked. For example, in part (a) of the
figure the two highest-order digits are zeros and therefore are blanked. The remaining two
digits, 3 and 9 are displayed.

The logic diagram in Figure 6-39(b) illustrates trailing zero suppression for a fractional
number. The lowest-order digit (ight-most) is always blanked if a zero code is on its BCD
inputs because the RBI is connected to ground. The RBO of each decoder is connected to the
RBI of the next highest-order decoder so that all zeros to the right of the first nonzero digit are
blanked. In part (b) of the figure, the two lowest-order digits are zeros and therefore are
blanked. The remaining two digits, 5 and 7 are displayed. To combine both leading and trail-
ing zero suppression in one display and to have decimal point capability, additional logic is
required.

ISREE'::-;?VN 3 1. A 3-line-to-B-line deceder can be used for octal-to-decimal decoding, When a binary

101 is on the inputs, which cutput line is activated?
2. How many T4HC154 1-of-16 decoders are necesiary to decode a 6-bit binary number?
3. Would you select a decoder/driver with active-HIGH or active-LOW outputs to drive a
common-cathode 7-iegment LED display?

6-6 | ENCODERS

An encoder is a combinationa] logic circuit that essentially performs a “reverse” decoder
function. An encoder accepts an active level on one of its inputs representing a digit, such as
a decimal or octal digit, and converts it to a coded output, such as BCD or binary, Encoders
can also be devised 10 encode various symbols and alphabetic characters. The process of

co ing from familiar symbaols or bers 10 a coded format is called enceding.

After completing this section, you should be able 1o

= Determine the logic for a decimal encoder ® Explain the purpose of the priority feature
in encoders @ Describe the T4HC 147 decimal-1o-BCD priority encoder

= Describe the 74F 148 octul-to-binary prionity encoder ® Expand an encoder

= Apply the encoder to a specific application

The Decimal-to-BCD Encoder

This type of encoder has ten inputs—one for each decimal digit—and four outputs correspon-
ding to the BCD code, as shown in Figure 6-40. This is a basic 10-line-to-4-line encoder,

232 w DIGITAL FUNDAMENTALS

» FIGURE 6-40 TR
Logic symbol for a decimal-to-BCD (°
encoder, !
—]2
— s 1 —_
Decimal | ——]4 21— | pcD
input —ls 4 p—— | outpar
— Py —
—17
—t
—1s

The BCD (8421) code is listed in Table 6-6. From this table you can determine the rela-
tionship between each BCD bit and the decimal digits in order 1o analyze the logic. For
instance, the most significant bit of the BCD code, Aj, is always a | for decimal digit 8 or 9.
An OR expression for bit A; in terms of the decimal digits can therefore be written as

A=8+9
Bit A; is always a 1 for decimal digit 4, 5, 6 or 7 can be expressed as an OR function as
follows:

Ay =4 +5+6+7

Bit A is always a | for decimal digit 2, 3, 6, or 7 and can be expressed as
A=243+6+7

Finally, A, is always a | for decimal digit 1, 3, 5, 7, or 9. The expression for A, is
Ay=1+3+5+7+9

» TABLE é6-6
BCD CODE
DECIMAL DIGIT | A,
(1] (1] L]] (]
i (R R oy |
2 VERRE e BT Y |
3 0 0 1 e |
4 [| 1 Ve i
5 n 1 o 1 - |
6 /0% Sitex &1 okl
7 B VS SR I s
] ! 1 o o (1]
9 | S e

Now, let us implement the logic circuitry required for encoding each decimal digit to a
BCD code by using the logic expressions just developed. It is simply a marter of ORing the
appropriate decimal digit input lines to form each BCD output. The basic encoder logic result-
ing from these expressions is shown in Figure 641,

The basic operation of the circuit in Figure 6-41 is as follows: When a HIGH appears on
ane of the decimal digit input lines, the appropriate levels occur on the four BCD output lines.
For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this condition

FUNCTIONS OF COMBINATIONAL LOGIC = 233

» FIGURE 6-41

v ,I = g—"-‘;

[) A

g— |
Ay iMSH)
[T

will produce a HIGH on outputs A, and A; and LOWs on owtputs 4, and A, which is the
BCD code (1001) for decimal 9.

10

The Decimal-to-BCD Priority Encoder This type of encoder performs the same basic
encoding function as previously discussed. It also offers additional flexibility in that it can be
used in applications that require priority detection, The prierity function means that the
encoder will produce a BCD output cormesponding to the highest-order decimal digit input
that is active and will ignore any other lower-order active inputs. For instance, if the 6 and the
3 inputs are both active, the BCD output is 0110 (which represents decimal 6).

A Decimal-to-BCD Encoder

The 74HC147 is a priority encoder with active-LOW inputs (0) for decimal digits | through
9 and active-LOW BCD outputs as indicated in the logic symbol in Figure 6-42. A BCD zero
output is represented when none of the inputs is active. The device pin numbers are in paren-
theses.

> FIGURE 6-42 : Veo
(16}
HPRI/BCD
an 4,
[N] d2
D4} 10 16 |1 Ve un o
Ds[l 2 15 [NC i 1,
Daff 3 141 A3 s 2p—-3
h) o, 4 8L ;
o7l 4 i3l b3 o : 8 p—t ;
[]
_Df. 5 12] b2 5 dg
Axlle njm TN Y
all]? 10l o (8)
GND[] & all An
GND
{2) Pin diagram b} Logic disgram

An B-Line-to-3-Line Encoder

The T4F148 is a priority encoder that has eight active-LOW inputs and three active-LOW
binary outputs, as shown in Figure 6—43. This device can be used for converting octal inputs
(recall that the octal digits are 0 through 7) to a 3-bit binary code, To enable the device, the E/
(enable input) must be LOW. [t also has the EO (enable output) and G5 output for expansion
purposes. The EO is LOW when the EI is LOW and none of the inputs (0 through 7) is active.
G5 is LOW when EJ is LOW and any of the inputs is active,

ENCODERS

234 w DIGITAL FUNDAMENTALS

> FIGURE 6-43 Vee
|E!6!
HPRI/BIN
(1 B =0 t:::
_QI:':I 0 asp—8
:u.] ! i) A
|3I N : 6] A
— 4 1' 3 sp—8 5
W Jdy
@
)] 5
@ _J,
(8}
GND
The T4F148 can be ded to a 16-line-to-4-line encoder by ing the EO of the

higher-order encoder to the EI of the lower-order encoder and negative-ORing the correspon-
ding binary outputs as shown in Figure 6-44. The EO is used as the fourth and most-signifi-
cant bit. This particular configuration produces active-HIGH outputs for the 4-bit binary

number.
* FIGURE &-44 01234567 B9 I0NI2131415
LU - I B A I S I I A)
T4F148 TAF148
0 14 o |24 G
o T\E L*] T L*]
T
Ao Ay A Ay

Binary oulputs

' EXAMPLE 6-11
If LOW levels appear on pins, 1, 4, and 13 of the T4HC147 shown in Figure 6-42, indicate

the state of the four outputs. All other inputs are HIGH.

Solution Pin 4 is the highest-order decimal digit input having a LOW level and represents decimal
7. Therefore, the output levels indicate the BCD code for decimal 7 where A is the LSB
and Ay is the MSB. Output A; is LOW, A, is LOW, A, is LOW, and Ay is HIGH.

Supplementary Problem What are the outputs of the T4HC147 if all its inputs are LOW? If all its inputs are HIGH?

FUNCTIONS OF COMBINATIONAL LOGIC = 235

" Application Example
A classic application uamp!s is a keyboard encoder, Thc ten decimal digits on the keyboard
of a i for must be ded for p 2 by the logic circuitry. When one
of the keys is pressed, the decimal digit is encoded to the mmaspondmg BCD code. Figure
645 shows a simple keyboard encoder arrangement using a 74HC147 priority encoder. The
keys are represented by ten push-button switches, each with a pull-up resistor to +V. The
pull -up resistor ensures that the llnc is HIGH when a key is not depressed. When a key is
1, the line is d 10 ground, and a LOW is applied 1o the corresponding
encoder input. The zero key is not connected because the BCD output represents zero when
none of the other keys is depressed.

> FIGURE 6-45 v
-
=R E;n, =k
T sk 9?
= -
TH TR OZTH i)
_0
A
.' BCD complernens
4F s 6 1)
L e > THICI4T
=8 =k R
bz 3

are HIGH indicating a 0
No encoding necessary,

_%&,
nJ' All BT comy lines
,']'i_

The BCD complement output of the encoder goes into a storage device, and each succes-
sive BCD code is stored until the entire number has been entered. Methods of storing BCD
numbers and binary data are covered in later chapters,

| I;EES:::N L= 1. Suppose, the HIGH levels are applied to the 2 input and the ¥ input of the circuit in
| Figure 6-41.

(a) What are the states of the output lines?

(b) Does this represent a valid BCD code?

{c) What is the restriction on the encoder logic in Figure 6=417

2. {a) What is the AJAA A, output when LOW: are applied to pins | and 5 of the
T4HC147 in Figure 6-427
(b) What does this output represent?

236 w DIGITAL FUNDAMENTALS

TABLE &-7

623'' cope CONVERTERS

In this section, we will examine some methods of using combinational logic circuits to con-
vert from one code to another,

After completing this section, you should be able to

= Explain the process for converting BCD 1o binary ® Use exclusive-OR gates for conver-
sions between binary and Gray codes

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits, The basic conversion
process is as follows:
1. The value, or weight, of each bit in the BCD number is represented by a binary num-
ber.

2. All of the binary representations of the weights of bits that are 1s in the BCD number
are added.
3. The result of this addition is the binary equivalent of the BCD number.
A more concise statement of this operation is
The binary numbers representing the weights of the BCD bits are summed to produce
the total binary number.

Let us examine an 8-bit BCD code (one that represents a 2-digit decimal number) to under-
stand the relationship between BCD and binary. For instance, you already know that the deci-
mal number 87 can be expressed in BCD as

1000 0111

8 7

The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That is,
the left-most group has a weight of 10, and the right-most group has a weight of 1. Within
each group, the binary weight of each bit is as follows:
Tens Digit Units Digit
Weight: B0 40 20 10 B 4 2 1
Bit designation: B B B B Ay As A Ay

The binary equivalent of each BCD bit is a binary number representing the weight of that
bit within the total BCD number. This representation is given in Table 6-7.

“[MSE) ~ BINARY REPRESENTATION
e 32 Ak Bded . 2

(L5B]
1

S
=IO — - - - B

FUNCTIONS OF COMBINATIONAL LOGIC = 237

If the binary representations for the weights of all the 15 in the BCD number are added, the
result is the binary number that corresponds to the BCD number. Example 6-12 illustrates this.

} I EXAMPLE 6-12
Convert the BCD numbers 001001 11 (decimal 27) and 1001 1000 (decimal 98) to binary.

Solution Write the binary representations’of the weights of all 1s appearing in the numbers, and

then add them together.

8040 20 10 B 4 2 |
001000111

! 000000 1

| | L— o010 2

| L—— ooo0100 4

| + 40010100 20

b———————— 0011011 Binary number for decimal 27

804020108421
10011000

| 0001000 8

‘ |l b Q001010 1O

| + £ 1010000 ED

e 1100010 Binary number for decimal 9%

Supplementary Problem Show the process of converting 01000001 in BCD 1o binary.

With this basic procedure in mind, let us see how the process can be implemented with
logic circuits. Once the binary representation for each 1 in the BCD number is determined,
adder circuits can be used (o add the 15 in cach column of the binary representation. The 1s
oceur in a given column only when the corresponding BCD bit is a 1. The occurrence of a
BCD | can therefore be used to generate the proper binary 1 in the appropriate column of the
adder structure. To handle a iwo-decimal-digit (two-decade) BCD code, eight BCD input lines
and seven binary outputs are required. (It takes seven bits to rejsesent binary numbers through
ninety-nine.)

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2, Exclusive-OR gates
can be used for these conversions. Programmable logic devices (PLDs) can also be pro-
grammed for these code conversions. Figure 646 shows a 4-bit binary-to-Gray code con-
verter, and Figure 6-47 illustrates a 4-bit Gray-to-binary converter.

= FIGURE &-46 Himary Ly

t G, ILSE

A

By G MSE)

238 = DIGITAL FUNDAMENTALS

> FIGURE 6-47 Gray Birary
ba B, (LSB}
Gy
B
s B,
. G B, (MSB)

I EXAMPLE 6-13 (a) Convert the binary number 0101 to Gray code with exclusive-OR gates.

(b) Convert the Gray code 1011 to binary with exclusive-OR gates.
Solution (a) 0101,is 0111 Gray. See Figure 6-48(a).
{b) 1011 Gray is 1101,. See Figure 6-48(b).

* FIGURE 6-48

Gray Binary
Binary Gray ! 1
' 1
I
5 l 0
1 1 a 1
0 0 1 I
{2 (b)
Suppl tary Probi How many i Qammmmm&ﬁnmm&:ﬂ

SECTION 6-7 £
IREVIEW 1. Convert the BCD number 10000101 to binary.

2. Draw the logic diagram for converting an 8-bit binary number to Gray code.

6=8 | MULTIPLEXERS (DATA SELECTORS)
A multiplexer (MUX) is a device that allows digital information from several sources to be
routed onto a single line for transmission over that line to 2 common destination. The basic
multiplexer has several data-input lines and a single output line. It also has data-select :
inputs, which permit digital data on any one of the inputs to be switched to the output line.
Multiplexers are also known as data selectors,
After completing this section, you should be able to

= Explain the basic operation of a multiplexer = Describe the 7415151 and the
T4HC157A multiplexers = Expand a multiplexer to handle more data inputs. = Use the
Itiplexer as a logic function g

FUNCTIONS OF COMEINATIONAL LOGIC = 239

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure 6-49. Notice that
there are two data-select lines because with two select bits, any one of the four data-input
lines can be selected.

> FIGURE 6-4%

MUX
paa [S ——]0
select t 55—
b, o y D
AHrtpant
pata | 0, ——1 L
inputs | p, 1,
n, 1

In Figure 649, a 2-bit code on the data-select (§) inputs will allow the data on the sclected
data input to pass through to the data output. If a binary 0 (5, = 0 and 5, = 0) is applied to
the data-select lines, the data on input D appear on the data-output line. If a binary 1 (5, = 0
and Sy = 1) is applied to the data-select lines, the data on input Dy appear on the data output.
1f a binary 2 (S5, = 1 and 8, = 0) is applied, the data on [2; appear on the output, If a binary 3
($) = 1 and S, = 1) is applied, the data on D; are switched to the output line, A summary of
this operation is given in Table 6-8.

» TABLE 6-8

DATA-SELECT INPUTS :
Sy INPUT SELECTED

Now, let us look at the logic circuitry reguired 1o perform this multiplexing operation. The
data output is equal to the state of the sefected data input. You can therefore, derive a logic
expression for the output in terms of the data input and the select inputs.

The data output is equal to Dyonly if 5, = Oand S, = 0: ¥ = Do515a.
The data output is equal to D, only if §, = Dand §, = 1: ¥ = D\5,5,.
The data output is equal 1o Dy only if §; = 1 and 5y = 0: ¥ = D\i“sn.
The data output is equal to Dy only if §; = land §; = 1: ¥ = Dy5,5,.
‘When these terms are ORed, the total expression for the data output is
¥ = D55, + DESy + D55, + DS, '

The |rnp]ement:l1m1 of this equnl:on requires four 3-input AND gates, a 4-input OR gate, and
wo 10 g the of §, and §;, as shown in Figure 6-50. Because
data can be s:lccll:d from any one of the input lines, this circuit is also referred to as a data
selector.

240 = DIGITAL FUNDAMENTALS

© FIGURE 6-50

I EXAMPLE 6-14

= FIGURE 6-51

Solution

Supplementary Problem

The data-input and data-select waveforms in Figure 6-51(a) are applied to the multiplexer
in Figure 6-50. Determine the output waveform in relation 1o the inputs.

The binary state of the data-select inputs during each interval determines which data input
is selected. Notice that the data-select inputs go through a repetitive binary sequence 00,
01, 10, 11,00, 01, 10, 11, and 50 on. The resulting output waveform is shown in Figure
6-51{b).

Construct a timing diagram showing all inputs and the output if the 5; and 5, waveforms in
Figure 6~51(a) are interchanged.

MULTIPLEXERS

A Quad 2-Input Data Selector/Multiplexer

The TAHC157A. as well as its LS version, consists of four separate 2-input multiplexers. Each
of the four multipl shares a lata-setect line and a Enable. B
there are only two inputs to be selected in each multiplexer, a single data-select input is suffi-
cienl

A LOW on the Enable input allows the selected input data o pass through to the output. A
HIGH on the Enable input prevents data from going through to the ourput; that is, it disables
the multiplexers.

FUNCTIONS OF COMBINATIONAL LOGIC

The ANSI/IEEE Logic Symbol The pin diagram for the 74HC157A is shown in Figure
6-52(a). The ANSIIEEE logic symbol for the T4HC15TA is shown in Figure 6-52(b). Notice
that the four multipl are indicated by the pantitioned outline and that the inputs common
to all four multiplexers are indicated as inputs to the notched block at the top, which is called
the common control block. All labels within the upper MUX block apply to the other blocks

below it

= FIGURE 6-52

DATA SELECT (] 10 16 [1 Ve
1A[] 2 15 |) ENABLE
1803 [ER LY
v+ 13 [] 48
2Af]s 12 4y
B[6 i3
w7 0[]
GND[] & 9] 3y Pl
{a) Pin diagram ih) Logic symbaol

Notice the 1 and 1 labels in the MUX blocks and the G1 label in the common control
block. These labels are an example of the dependency notation system specified in the
ANSVIEEE Standard 91-1984. In this case G1 indicates an AND relationship between the
data-select input and the data inputs with | or T labels. (The 1 means that the AND relation-
ship applies to the complement of the G input.) In ather words, when the data-select input is
HIGH, the B inputs of the multiplexers are selected: and when the data-select input is LOW,
the A inputs are selected. A “G" is always used to denote AND dependency. Other :l(pcﬂ(of
dependency notation are introduced as appropriate throughout the book.

An 8-Input Data SelectorfMultiplexer

The 74L5151 has eight data inputs (Dy-0;) and, therefore, three data-select or address input
lines (5,-5;). Three bits are required to seleet any one of the eight data inputs (2° = 8). A
LOW on the Enable input allows the selected input data to pass through to the output. Notice
that the data output and its complement are both available. The pin diagram is shown in Figure
6-53(a), and the ANSIIEEE logic symbol is shown in part (b). In this case there is no need for
a common control block on the logic symbol because there is only onc multiplexer to be

» FIGURE 6-53 MUX

[FR T =] 161 Voo
pzif2 15[s

DI} 3 14 1 DS P

Dofj 4 13[] Da 2

Y[ls 12{] D7 3

Vs 11 {1 50 '&:

ENABLE[] 7 10 {1 81 o, (LET 4

GND | & 9]l 52 p M2 1

a1 Fin diagram ih) Logic symbaol

= 24

242 w DIGITAL FUNDAMENTALS

controlled, not four as in the TAHC157A, The G2 label within the logic symbol indicates the
AND relationship between the data-select inputs and each of the data inputs 0 through 7.

l EXAMPLE 6-15
Use 74151515 and any other logic necessary to multiplex 16 data lines onto a single data-

output line.

Solution An implementation of this system is shiwn in Figure 6=54. Foor bits are required to sclect
ome of 16 dita inputs 12° = 16). In this application the Erable input is used as the most
significant data-select bit. When the MSB in the data-select code 15 LOW, the left TALS151
is enabled, and one of the daa inputs (D through D4 is selected by the'other three data-
select bits. When the data-sebect MSB is HIGH. the right 74LS151 is enabled, and one of
the duta inputs (D through D<) is selected. The selected inpat data are then passed
through to the negative-OR gate and onto the single outpat line.

FIGURE &-54

1M TAHODE

— i1 THC

1

3

4 33 ¥ 4 ;—‘---JD .
3 | Sy ——13 —

" !

J

TALSIA ! TALA1S1 I

Supplementary Probilem Determine the codes on the select inputs required to select each of the following data
inputs: My, Dy, Dy, and D)y,

Application Examples

A 7-Segment Display Multiplexer Figure 6-35 shows a simplified method of multiplexing
BCD numbers 1o a T-segment display. In this example, 2-digit numbers are displayed on the
T-segment readout by the use of a single BCD-to-T-segment decoder. This basic method of
display multiplexing can be extended to displays with any number of digits. The basic opera-
tion is as follows,

Two BCD digits (4444, and B.8,8,8,) are applied 10 the multiplexer inputs. A square
wave is applicd 1o the data-select line, and when it is LOW, the A bits (Asd,4,A) are passed
through to the inputs of the 741548 BCD-to-7T-segment decoder. The LOW on the data-select
also puts a LOW on the A} input of the T4LS139 2-line-to-4-line decoder, thus activating its (1
output and cnabling the A-digit display by effectively connecting its common terminal o
ground. The A digit is now on and the 8 digit is off.

FUNCTIONS OF COMBINATIONAL LOGIC = 243

When the data-select line goes HIGH, the B bits (88,8 H,) are passed through 1o the
inputs of the BCD-to-T-segment decoder. Also, the 7415139 decoder’s 1 output is activated,
thus enabling the B-digit display. The 8 digit is now on and the A digit is off. The cycle repeats
at the frequency of the data-select square wave. This frequency must be high enough (about
30 Hz) to prevent visual flicker as the digit displays are multiplexed.

LOW selects Al Ay

—
ll‘l/—HlU!IwIﬂuﬂ.RTB,k,

Drara
select
e BCDT-scg
— = la
"
1, ——— {1 MUK N b
B, —i .
. B
[E—
R . Py B it
B, — .)(B
b, —— b 8 |ttt
B, ——
TALS1ST LS
LD BCD; Ay Azds Ao Common-cathoda
MSD BCD: By 8.8 & displays
i
| & digin
| (MSTE
Decoder
¢ M Iy p—
) 1 p—
*Additional buffer deive o R p—
circuitry may be required. $ o G1ENT i
L ol

= LTSI

& FIGURE 6-55

A l.ogc F&mdmﬂ Gmcmlor A useful app].lcnuon of the data selector/multiplexer is in the

i I logic functi in sum-of- d form. When used in this way.
the de\-lce can replace discrete gates, can often greatly reduce the number of ICs, and can
make design changes much easier.

To illustrate, a 74L5151 8-input data selector/multipleser can be used to implement any
specified 3-variable logic ion if the vari: are to the data-select inputs and
each data input is set to the logic level required in the truth table for that function. For exam-
ple. if the function is a 1 when the variable combination is A;44, the 2 input (selected by
(10) is connected to a HIGH. This HIGH is passed through to the output when this particular
combination of variables occurs on the data-select lines. An example will help clarify this
application,

244 m DIGITAL FUNDAMENTALS

|EXAMF|.E 6-16
Implement the logic function specified in Table 6-9 by using a 74LS151 8-input data

selector/multiplexer. Compare this method with a discrete logic gate implementation.

* TABLE &=-9

INPUTS. . ouTPUT
¥

Ay

Solution Notice from the truth table that ¥ is a 1 for the following input variable combinations: 001,
011, 101, and 110, For all other combinations, ¥ is 0. For this function to be implemented
w:lh |hc data selector, the data input selected by each of the above-mentioned

ions must be d to a HIGH (5 V). All the other data inputs must be
connected to a LOW (ground), as shown in Figure 6-56.

» FIGURE 6-5&

= L

1, ——0
Ioput | 4 o
varishles 1 %
Ay—]

+5V

¥ =Aadid = s+ Asbide + Aadid,

=L s

The implementation of this function with logic gates would require four hnpul AND
gates, one 4-input OR gate, and three i unless the expression can be simplifi

Supplementary Problem Use the T4L5151 to impl the foll

FUNCTIONS OF COMEINATIONAL LOGIC

Example 6-16 illustrated how the 8-input data selector can be used as a logic function
generator for three variables. Actually. this device can be also used as a 4-variable logic
function generator by the utilization of one of the bits (Ag) in conjunction with the data
inputs.

A 4-variable truth table has sixteen combinations of input variables. When an 8-bit
data selector is used, each input is selected twice: the first time when Ay is 0 and the
second time when A, is 1. With this in mind, the following rules can be applied (¥ is the
output, and Ay is the least significant bit):

1. If ¥ = 0 both times a given data input is selected by a certain combination of the
input variables, Awd,A,. connect that data input to ground (0).

2. If ¥ = | both times a given data input is selected by a certain combination of the
input variables, AwdaA,, connect the data input to + V(1)

3. If ¥ is different the two times a given data input is selected by a certain combina-
tion of the input vanables, A3A:4,, and if ¥ = A, connect that data input 1o A,

4. If ¥is different the two times a given data input is selected by a certain combina-
tion of the input variables, A3A:A,. and if ¥ = Ay, connect that data input to Ay,

The following example illustrates this method.

| EXAMPLE 6-17
Implement the logic function in Table 6-10 by using a 74LS151 S-input data selector/

multiplexer. Compare this method with a discrete logic gate implementation.

= TABLE é=-10

DECIMAL |
DIGIT | 4
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 (1]
] 1
L] 1
10 1
1 1
12 1
13 1
14 I
15 1

INPUTS
Ay
0 0
0 0
0 1
-
1 0
1 (]
1 1
i 1
o 0
o 0
0 1
[|
(]
1250
1 I
1 1

Ag |

e — e e M i W S S

Y

B 245

ouTPUT

246 w DIGITAL FUNDAMENTALS

Solution The data-select inputs are A3AA,. In the first row of the table, A4, = 000 and
¥ = Ay In the second row, where Ayi,A, again is 000, ¥ = Ag. Thus, A, is connected to the
0input. In the third row of the table, As434, = 001 and ¥ = A, Also, in the fourth row,
when AyA A, again is 001, ¥ = Ay, Thus, A, is inverted and connected to the | input. This
analysis is continued until each input is properly connected according to the specified
rules. The implementation is shown in Figure 6-57.

> FIGURE &é-57

MUX
LBV
" —o
Ay Gy
Ay 2
Ay o
L v D
L_ 5 ¥ Az Apd dg + ApdaA Ag + AzdaA Ay
oo 3 S ARG A A ¢ AR A,
L, + AgAad Ag + Ay dy + AyAA,4,
s + Agdad Ay
6
7

T4L5151

If implemented with logic gates, the function would require as many as ten 4-input
AND gates, one 10-input OR gate, and four inverters, although possible simplification
would reduce this requirement.

Supplementary Problem In Table 6-10, if ¥ = 0 when the inputs are all zeros and is alternately a 1 and 2 0
for the remaining rows in the table, use a T4LS151 to implement the resulting logic func-
tion.” -

lszcﬂou 6-8 ;
R 1. In Figure 6-50, 05 = 1,0, = 0,0, = 1,0, = 0,5, = 1, and §, = 0. What is the output?

2. Identify each device:
(a) 7415157 ({b) 74L5151

3. A 74L5151 has alternating LOW and HIGH levels on its data inputs beginning with
Dy = 0. The data-select lines are sequenced through a binary count (000, 001, 010, and
10 on) at a frequency of 1 kHz. The enable input is LOW, Describe the data output wave-
form.

4. Briefly describe the purpose of each of the following devices in Figure 6-55:
(a) 7415157 {b) 741548 (c) 7415139

FUNCTIONS OF COMBINATIONAL LOGIC = 247

IDEMULTIPLEXERS —
A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital
information from one line and distributes it to a given number of output lines. For this

reason, the demultiplexer is also known as a data distributor. As you will leam, decoders can
also be vsed as demultiplexers.

After completing this section, you should be able to

= Explain the basic operation of a demultiplexer ® Describe how the TAHC154
4-line-to-16-line decoder can be used as a demultiplexer ® Develop the timing diagram for
a demultiplexer with specified data und data selection inputs

Figure 6-58 shows a 1-line-to-4-line demultiplexer (DEMUX) circuit. The data-input line
goes to all of the AND gates. The two data-select lines enable only one gate at a time, and the
data appearing on the data-input line will pass through the selected gate to the associated data-
output line,

= FIGURE &-58 Diata
imput

e
lines ‘ILu _L.—_{> 1 £ |

I EXAMPLE 6-18
The serial data-input waveform (Data in) and data-select inputs (S, and §,) are shown in

Figure 6-59, Determine the data-output waveforms on Dy through D; for the demuliiplexer
in Figure 6-58.

» FIGURE 6-59

Solution Notice that the select lines go through a binary sequence so that each successive input
bit is routed 1o [, Dy, Dy, and D in sequence, as shown by the cutput waveforms in
Figure 6-59,

Supplementary Problem Develop the timing diagram for the demultiplexer if the S, and §; waveforms are both
inverted.

248 = DIGITAL FUNDAMENTALS

A DEMULTIPLEXER

We have already discussed the 74HC154 decoder in its application as a 4-line-to-16-line

decoder (Section 6-5). This device and other decoders can also be used in demultiplexing
applications. The logic symbol for this device when used as a demultiplexer is shown in
Figure 6—60. In demultiplexer applications, the input lines are used as the data-select lines.
One of the chip select inputs is used as the data-input line, with the other chip select input
held LOW to enable the internal negative-AND gate at the bottom of the diagram.

» FIGURE 6-60 DEMUX

R R R -]

:

I

Do om | & | 1sp-
"o EN

[l

SECTION 6-9
REVIEW

1. Generally, how can an decoder be used as a demultiplexer?
2. The 74HC154 demultiplexer in Figure 6-60 has a binary code of 1010 on the data-select
lines, and the data-input line is LOW. What are the states of the output lines?

Fé3107 PARITY GENERATORS/CHECKERS -

. Ermrsmnou:urmdlgmlmdumbemguamfcnedI’munemmllolnnlherumhma

digital system or while codes are being transmitted from one system to another. The errors
uﬂmﬂnromufund:mmddmnges|n|hch|uiha1muk:upll:cudedmfmwm.lha:|s.
a 1 can change to a 0, or a 0 to a 1, because of p ical noise.
In most digital systems, the probability that even a single bit error will occur is very small,
and the likelihood that more than one will occur is even smaller. Nevertheless, when an emror
occurs undetected, it can cause serious problems in a digital system.

After completing this section, you should be able to

= Explain the concept of parity ® Implement a basic parity circuit with exclusive-OR
gates @ Describe the operation of basic parity generating and checking logic ® Discuss
the 74LS280 9-bit parity generator/checker @ Discuss how error detection can be imple-
mented in a data transmission

FUNCTIONS OF COMBINATIONAL LOGIC = 249

The parity method of error detection in which o parity bit is attached 10 a group of infor-
mation bits in order to make the total number of 1s either even or odd (depending on the sys-
tem) was covered in Chapter 2. In addition to parity bits, several specific codes also provide
inherent error detection.

Basic Parity Logic

In order o check for or to generate the proper parity in a given code, a basic principle can be
used:

The sum (disregarding carries) of an even number of 1s is always 0, and the sum of an
odd number of 1s is always 1.

Therefore, o determine if a given code has even parity or odd parity, all the bits in that code
are summed, As you know, the sum of two bits can be generated by an exclusive-OR gate.
shown in Figure 6-61(a); the sum of four bits can be formed by three exclusive-OR gates con-
nected as shown in Figure 6-61(b); and so on. When the number of 1s on the inputs is even,
the output X is 0 (LOW). When the number of Is is odd, the output X is 1 (HIGH).

= FIGURE é-61 1
A
1 ¥
A A
A A
{a} Summing of tao bits by Summing of four bits

A 9-BIT PARITY GENERATOR/CHECKER

The logic symbol and function tble for a 74L5280 are shown in Figure 6-62. This particular
device can be used 1o check for odd or even parity on a 9-bit code (eight data bits and one
parity bit} or it can be used to generate a parity bit for a binary code with up to nine bits. The
inputs are A through 7; when there is an even number of s on the inputs, the £ Even output is
HIGH and the £ Odd output is LOW.

Dt

gt | ()
Number of Inputs Outputs
A-1That Are HIGH | SEven X 0dd
0,2,4,6,8 H L
1,3,5,7,9 L H
fa) Traditional logic symbol b} Function table

A FIGURE &-61

Parity Checher When this device is used as an even panity checker, the number of input bits
should always be even; and when a parity ermor oceurs, the £ Even output goes LOW and the

250 @ DIGITAL FUNDAMENTALS

X Odd output goes HIGH. When it is used as an odd parity checker, the number of input bits
should always be odd; and when a parity ermor occurs, the £ Odd output goes LOW and the £
Even output goes HIGH.

Parity Generator If this device is used as an even parity gencrator, the parity bit is taken at
the £ Odd output because this output is a 0 if there is an even number of input bits and itisa [
if there is an odd number, When used as an odd parity generator, the parity bit is taken at the £
Even output because it is a 0 when the number of inputs bits is odd.

A Data Transmission System with Error Detection

A simplified data transmission system is shown in Figure 6-63 to illustrate an application of
parity generators/checkers, as well as multipl and demultipl and to illustrate the
need for data storage in some applications.

Four-conductor transmassion line

Ernoe pane
— ey, s—
g_T 3] —— Eme= |
| |
[H]
| DEMUX
| ! 1" o fp———— 0,
| |
LI ']
| 22—y
L T
4> i1t Dy
3 1 [
[o—lo : o,
| S ERE RN SN
] (1
el |
TALSI38 |
Even parity bit (1
I
| Slerage |
i A T I 1
H b———s -8
| < —{g
—1n I D
£ Tom | - £ TEven
E "
G ——
" H
- I
EVEN purty EVEN parity
encrator checker
1TALS 280 *Starage devices are introduced in (TALS280

Chapier 8 and used in other Later chapaers.

& FIGURE 8-63

FUNCTIONS OF COMBINATIONAL LOGIC =

In this application, digital data from seven sources are multiplexed onto a single line for
transmission to a distant point. The seven data bits (D, through [,) are applied to the mult-
plexer data inputs and, at the same time, to the even parity generator inputs. The £ Odd output
of the parity generator is used as the even parity bit. This bit is 0 if the number of 1s on the
inputs A through [is even and is a 1 if the number of 15 on A through [is odd. This bit is Dy of
the transmitted code.

The data-select inputs are ref dly cycled through a binary sequence, and each data bit,
beginning with £, is serially passed through and onto the transmission line (¥). In this exam-
ple. the transmission line consists of four conductors: one carries the serial data and three
carry the timing signals (data selects). There are more sophisticated ways of sending the
timing information, but we are using this direct method to illustrate a basic principle.

At the demultiplexer end of the system, the data-select signals and the serial data stiream
are applied to the demultiplexer. The data bits are distributed by the demultiph onto the
output lines in the order in which they occurred on the multiplexer inputs. That is, D comes
out on the Dy output, Iy comes out on the [output, and so on. The parity bit comes out on
the D5 output. These eight bits are temporarily stored and applied to the even parity checker.
Not all of the bits are present on the parity checker inputs until the parity bit £, comes out and
is stored. At this time, the error gate is enabled by the data-select code 111, If the parity is cor-
rect, a 0 appears on the £ Even output, keeping the Error output at 0. If the parity is incorrect,
all 1s appear on the error gate inputs, and a 1 on the Error output results,

This f 1 has i the need for data storage so that you will be
better able to appreciate the usefulness of the storage devices introduced in Chapter 7 and
used in other later chapters.

The timing diagram in Figure 6-64 illustrates a specific case in which two 8-bit words are
transmitted, one with correct parity and one with an error.

* FIGURE 6-64 #0102 34567 0012348
N N A -
B e S e B e N e T o Y | | |
| I JR P | b | — i
i ST e e
] 1 1 1 [B 1 g —-] 1 1 I 1
g1 00 [[
Tl—d—i—b— 1]
] [H [
LI I
'u 'n n :JJ,_:J" ;n. :ndn IR R
: | T T T A
f '. ! LAnooaid
SECTION 6-10
|REWEW 1. Add an even parity bit to each of the following codes:
(a) 110100 (k) 01100011
2. Add an odd parity bit to each of the following codes:
{a) 1010101 (L) 1000001.

3. Check cach of the even parity codes for an error.
(a) 100010101 (L) 1110111001,

| GLITCHES IN DECODER CIRCUITS

Z

51

In this section, the problem of decoder glitches is introduced. A glitch is any undesired voli-

age or current spike (pulse) of very shon duration. A glitch can be interpreted as a valid

signal by a logic circuit and may cause improper operation.

After completing this section, you should be able to

® Explain what a glitchis @ Determine
= Use the method of output strobing to eliminate glitches

he cause of glitches in a decoder application

252 = DIGITAL FUNDAMENTALS

The 7T4LS138 was used as a DEMUX in the data transmission system in Figure 6-63. Now,
the 74HC138 is used as a 3-line-to-8-line decoder (binary-to-octal) in Figure 665 to illustrate
how pliteches occur and how to identify their cause. The AA,A, inputs of the decoder are
sequenced through a binary count, and the resulting waveforms of the inputs and cutputs arc
as shown in Figure 6-65. A, transitions are delayed from A, transitions and A, transitions are
delayed from A, transitions, This commonly occurs when waveforms are generated by a
binary counter, as you will leamn in Chapter 8.

= FIGURE 6-65

TYTT777Y

Decoder waveforms with output
glitches
BINAOCT
Ap— 1 0
Ay— 2]
Ap—t 4 2
k}
4
W — & 5
EN &
7
T4HC138

Point 2: waveforms on expanded time scale
A HIGH: Ag AL LOW 5 £ A, A, A, LOW

Point 1 Point 2

Point 3 Paint 4

Mg LTI
AL
Ay L

0 luitch | 2hteh |

T L]

2 |__Twieen]

3 J —

i L Jein] wieh |

3 L]

6 L Tetieeh |
i LI

Point 3: waveforms on expanded time scabe
Ao Ay LOW: A, HIGH

U

[

rHODDu

Paint 1: waveforms on expanded time u:-l: | | Punlni waveforms on expanded time scale

A,, LOW; A, A; HIGHG - £ A LOW; Az HIGH

§ oA A LOW

‘ U

ey

A Ao
I " __I—L

Ao N P T = 4 N
[T

"'____/—- i — Ay AY
! Py s -

As ; —|' — U

W U ; L= R U

[LE0

& FIGURE 8-86

HRLH LY O

Portions of waveforms on expanded time scale

FUNCTIONS OF COMBINATIONAL LOGIC = 253

The output waveforms are comrect except for the glitches that occur on some of the output
signals. The points of interest are indicated on the input waveforms in Figure 6-65 and are
shown in expanded form in Figure 6-66.

At point | there is a transitional state of 000 due to delay differences in the waveforms.
This causes the first glitch on the 0 output of the decoder. At point 2 there are two transitional
states, 010 and 000. These cause the glitch on the 2 output of the decoder and the second
glitch on the 0 output, respectively. At point 3 the transitional state is 100, which causes the
first glitch on the 4 output of the decoder. At point 4 the two transitional states, 110 and 100,
result in the glitch on the 6 output and the second glitch on the 4 output, respectively.

One way to eliminate the glitch problem is a method called strobing, in which the decoder
is enabled by a strobe pulse only during the times when the are not in ith
This method is illustrated in Figure 6-67.

* FIGURE &=-67

Use of strobe waveform to eliminate

glitches

BINAOCT
Ag=—i1 0 p—
Ay—o 2 | p— 3
Ay—ry 4 1p— :
3ip— %
4 p— 2
Stobe —{ & 5 p— 3
EN 6 p— 3
Tp— &
5
TAHCI38 -
= 6
7 i

— Fn -
REVIEW

SUMMARY

. Define the term glitch.
2. Explain the basic cause of glitches in decoder logic.
3. Define the term itrobe.
= The basic logic ions are compari ithmetic, code ion, decoding, ding, data

selection, storage, and counting.

Half-adder and full-adder operations are summarized in Figure 6-68,

Logic symbals with pin numbers for the ICs used in this chapter are shown in Figure 6-69. Pin
designations may differ from some manufaciurers' data sheets.

254 = DIGITAL FUNDAMENTALS

= FIGURE 6-68 Half-adder

]
‘k]] 0 0 0 r4
| fom e
H 1 1 I o

THC1T
vl 8T oty bt

=

: Sl I

Fy g

o L .]‘ fy !

T], ‘{, X

5 =), py TR

o m W

n vy

] i

s . A ELE
s 1T saLsms

S i v ey

+ FIGURE &-&9

FUNCTIONS OF COMBINATIONAL LOGIC = 255

Anvwers are at the end of the chapter.

1. The device used 1o converl a binary number 1o a 7-segment display format is
() multiplexer (b} encoder (e} decoder (d} register

2. Anexample of a data storage device is
{m) the logic gate (b)) the Nip-flop (€} the comparator
id) the register (e} both answers (b) and {d)

3. A half-adder is characterized by
{a} two inputs and two outputs {b) three inputs and two oatputs
ic) two inputs and three cutpuis {d) two inputs and one cutput

4. A fall-adder is characterized by
{a) two inputs and two outputs (b} three inputs and two outputs
fc) Two inputs and three cutputs {d} two inputs and one output

5. The inputs toa full-sdder are A = |, B = 1, €, = 0. The outputs are
M E=1.Cpu=1 () E=1.Cp=0
€ E=0.Cu=1 WE=0.C=0

6, A 4-bit parallel adder can add
(a1} two 4-bit binary numbers (b) two 2-bit binary numbers
fe} four bits at a time (d} four bits in sequence

7. The TALSE3A is an example of a 4-bit paraliel adder. To expand this device to an 8-bit adder, you
must
(a) use four adders with no imcreonbections
(b} use two adders and connect the sum outputs of one o the bit inputs of the other
{c} use eight adders with no interconnections
{d} use two adders with the carry output of one connected to the carry input of the other

8. If a TAHCES magnitude comparator has A = 1011 and B = 1001 on its inpets, the outputs are
WAFB=0A<BE=1LA=B=0) A=B=LA<B=0A=8=0
) A=B=1LA<B=1A=B=i M A>B=0A<B=0A=8F=1

9. 1f a 1-of-16 decoder with active-LOW outpots exhibits a LOW on the decimal 12 output, what are
the inputs?
B} Adad, A = 1010 (b} Axdx4,4,= 1110
(€) Al Ap = 1100 i} At Ay = 0100

10. A BCD-to-7 segment decoder has 0100 on its inputs. The active outputs are
) acfg b bhefe @beef (dbdey

11 If an octal-to-hinary priority encoder has its 0, 2, 5, and & inputs a1 the active level, the active-HIGH
binary output is
ial 110 {h) 010 [} (d)y 000

12, In general, a multiplexer has
(@) one data input, several data cutputs, and selection inputs
{b) one data input, one data output, and one selection input
(e} several data inputs, several data outputs, and selection inputs
{d) several data inputs, one data oulput, and selection inpas
L3, Data selectoes are hacically the same as

{a) decoders () demultiplexers
{c) multiplexers {d) encoders
14. Which of the following codes exhibit even parity?
da) 100110600 (b} 01111000 fe) 11Ennnn

[CIMBLHER T e} all i) both answers (b) and (c)

256 m DIGITAL FUNDAMENTALS

SECTION &-1 Basic O iew of Logic Functi
1. Name the logic function of each block in Figure 6-70 based on your observation of the inputs and

outputs.
5 A 2
2 ? 6
| I

3 3
@ ®
HIGH —— : . 4 ucn
LoW — '

2 B ! 4 Low
wow —1 2 f—TTeel ? Low
HIGH =—— 7 —— LOW

e
Select inputs
(] ()

4 FIGURE 6-70

2. A pulse waveform with a frequency of 10 kHz is applied 1o the input of a counter. During 100 ms,
how many pulses are counted?
3. Consider a register that can store eight bits. Assume that it has been reset so that it contains zeros in
all positions. If you transfer four alternating bits (0101) serially into the register, beginning with a 1
and shifting to the right, what will the total content of the register be as soon as the fourth bit is
stored?
SECTION 6-2 Basic Adders
4. For the full-adder of Figure 6-12, determine the logic state (1 or 0) at each gate output for the
following inputs:
@A=1LB=1Ca=1 M A=0B=1Ca=1 (A=0E8=1C,=0
5. What are the full-adder inputs that will produce each of the following outpus:
@) E=0Ca=0 (BIL=1Cp=0
) E=1LCu=1 (A I=0,Can=1
6. Determine the outpuis of a full-adder for each of the following inputs:
@ A=LF=0Ca=0 (BD)A=0B=0C.=1
) A=0B=10C.=1 MA=18=1C,=1

SECTION 6-3 Parallel Binary Adders
7. For the paralle] adder in Figure 671, determine the complete sum by analysis of the logical opera-
tion of the circuit. Verify your result by longhand addition of the two input numbers.
8. Repeat Problem 7 for the circuit and input conditions in Figure 6-72.
9. The input waveforms in Figure 6-73 are applied to a 2-bit adder. Determine the waveforms for the
sum and the output carry in relation to the inputs by constructing 3 timing diagram.

= FIGURE 4-71

> FIGURE 6-72

FUNCTIONS OF COMBINATIONAL LOGIC = 257

= FIGURE &-73

Ay

SECTION 6-4

Az
L
By

Cia

-

10, The following sequences of bits (right-most bit first) appear on the inputs 1o a TALSEIA adder.
Determine the resulting sequence of bits on each output.

A 1001
A 1110
A 0000
A 1011
B 1111
B, 1100
By 1010
B, 0010

11. In the process of checking a 7T4L583A 4-bit paralle] adder, the following voltage Jevels are observed

on its pins: 1-LOW, 2-HIGH, 3-HIGH, 4-HIGH, 6-HIGH, 7-HIGH, §-LOW, 9-LOW, 10-LOW,
11-LOW, 13-LOW, 14-HIGH, 15-LOW, and 16-HIGH. Determine if the IC is functioning properly.

Comparators

12. The waveforms in Figure 6-74 are applied to the comparator as shown. Determine the output

(4 =) waveform.

13, For the 4-bit comparatoe in Figure 6-75, plot each owput waveform for the inputs shown. The

‘outputs are active-HIGH.

258 = DIGITAL FUNDAMENTALS

= FIGURE 6-74 Ao

A

By

aboad
L
_I
I
===
= P
[| |
- =1
P
L]

B

» FIGURE 6-75

T4HCES

I4. For each set of binary numbers, determine the output states for the comparator of Figure 6-25,
(@) AvlaA Ay = 1100 (b} Aptpdidy = 1000 {€) AxdpAi4, = 0100
BBy B By = 1001 B;5,8,8, = 1011 Bafiyll By = 0100

SECTION 6-5 Decoders
15, When a HIGH is on the outpel of each of the decoding gates in Figure 6-76, what is the binary code
appearing on the inputs? The MSB is A,.

FIGURE 6-T6

Ay
Ao A
A
A Ay
A3 A
fa) by
Ay
A
Ay
Y iy
1;
Ay Ay
(5] (L1

16. Show the decoding logic for each of the following codes if an active-HIGH (1) output is required:
{a} 1101 {b) 1000 ey 11011 {d) 11100
(e) 101010 n 1110 (g) 000101 (k) 1110110

17. Solve Problem 16, given that an active-LOW (0) output is required.

FUNCTIONS OF COMBINATIONAL LOGIC = 259

18. You wish to detect only the presence of the codes 1010, 1100, 0001, and 101 1. An active-HIGH oul-
put is required to indicate their presence. Develop the minkmum decoding logic with a single output
that will indicate when any one of these codes is on the inputs. For any other code, the output must
be LOW.

19. 11 the input waveforms wre applied w the decoding Jogic as indicated in Figure 6-77, sketch the out-
put wavelorm in proper relation to the inputs,

= FIGURE 6-77 A T
Pk L — | b—_—— Ap
A i
U T B R
] 1] 1 1 1
- h ' | 1 A ¥
A o
Az

20. BCD numbers are applied sequentially to the BCDuo-decimal decoder in Figure 6-78. Draw a
timing dingram. showing cach output in the peoper relationship with the others and with the inputs,

» FIGURE 4-78 BCIVDEC

[1] s —

Ay

A

EE

R

PP S S S O S

THICA2

2L A T-segment decoder/driver drives the display i Figure 6-79. 1f the waveforms are applied as indi-
cated, determine the sequence of digits that appears on the display.

» FIGURE 6-79 I S RO Tamg
e Ao
P == I R R i —
e et AH—! “—] l
i s + oo] i L P— | L5 Sa—
A [R X —
.I} i :] H Il 1 —]4) Com—
o . s b |
i

SLCTION 44 Encoders
23, For the decimal-to-BCI encoder logic of Figure 6—41. assume that the 9 input and the 3 input are
both HIGH. What is the output code? Is it a valid BCD (8421) code?

23, A T4HC147 encoder has LOW levels on pins 2, 5, and 12 What BCD code appears on the outputs if
all the oaher inputs are HIGH?

260 ® DIGITAL FUNDAMENTALS

SECTION 6-7

SECTION é-8

™ FIGURE &-80

» FIGURE 6-81

Code Converters
24. Convert the following decimal numbers to BCD and thea to binary.
@2 s (@13 Ww (033

25, Show the logic required to convert a 10-bit binary number to Gray code, and use that logic to
convert the following binary numbers to Gray code:
(=) 1010101010 (b) 1111100000 () DODOOOLILG (d) PLDMALDNND

26. Show the logic required to convert a 10-bit Gray code to binary, and use that logic to convert the
following Gray code words to binary:

{a) 1010000000 (b) 0011001100 (e} 1111000111 {d) DODDOOD0GT
Multiplexers (Data Selectors)
27. Forthe in Figure 6-80, d the output for the following input states: Dy = 0, D,
= 1,0, = 1,0y =0,5= 1,5 =0
MUX
S —0
8§] J’ af
Dy —do
[E— — !
012
(L]

28. If the data-select inputs to the in Figure 6-80 are l a8 hown by the waveforms
in Figure 6-81, determine the output waveform with the data inputs specified in Problem 27.

* FIGURE &-82

5 [-
]))] 1)
') L} 1 13
S o s B I B ey B
29, The waveforms in Figure 6-82 are observed oa the inputs of a T4LS151 E-input multiplexer. Sketch
the ¥ output waveform.
5 i | i
] T 1]
Select Si |
inputs s
H
Enable || — — —
Dy
by
oy
Dawa | P
Imprits
b, L 1
]]
Dy : i 1) 1
[T T T T
oL -
H L H i 1
B, I

SECTION 6-9

SECTION 6-10

* FIGURE 6-83

FUNCTIONS OF COMBINATIONAL LOGIC = 261

Demultiplexers

3. Develop the total timing diagram (inputs and outputs) for a T4HC154 used in a demultiplexing
application in which the inputs are as follows: The data-select inputs are repetitively sequenced
through a straight binary count beginning with 0000, and the data input is 4 serial data stream carry-
ing BCD data representing the decimal number 2458. The least significans digit (8} is
first in the sequence, with its LSB first, and it should sppear in the first 4-bit positions of the cutput.

Parity Generators/Checkers

3. The waveforms in Figure 6-83 are applied to the 4-bil parity logic. Determine the output waveform
in proper relation to the inputs, For how many bit times does even parity occur, and how is it indi-
cated? The timing disgram includes eight bit times.

Bit

> FIGURE -84

time

i
i

T e S N |

|
A I
i

O I T S e A
0N T T O e

32, Determine the L Even and the £ Odd outputs of 3 T4LS280 9-bit parity generatorfchecker for the
inputs in Figure 6-~84. Refer to the truth table in Figure 6-62.

EVEN |

onD HE
oW1
Ay

Az H

&

]

SECTION 6-1

SECTION REVIEWS
Basic Overview of Logic Functions

1A pares the magni of two input numbers.

2. Add, subtract, multiply. and divide

3. Encoding is changing & familiar form such as decimal to a coded form such as binary.

4. Decoding is changing a code to a familiar form such as binary to decimal.

5. Multiplexing puts data from many sources onto one line, Demultiplexing takes data from one line
and distributes it to many destinations.

6. Flip-Mops, registers, semiconductor memories, magnetic disks

7. A counter counts events with a sequence of binary states.

262 w DIGITAL FUNDAMENTALS

SECTION 6-2 Basic Adders

L@E=1,Cp=0 (1) E=0,Cp=0
(@E=1LCou=0 (DE=0Cr=1
2E=1,Cp=1

SECTION 6-3 Parallel Binary Addess
L Coglal5 B0, = 11000, 2 Three T4L5283s are required to add two 10-bit numbers,

SECTION 6-4 Comparators
LAZB=1LA<B=0A=8=0whenA = 1011and B = 1010
2 Rightcomparatorpin A < B = lipln&A=H=0pnS:A=8=10
Left comparator: pin 'A< B=0:pinGA=B=0pinS:A=B=|

SECTION 6-5 Decoders
1. Output 5 is active when 101 is on the inputs.
2. Four T4HC 1545 are used to decode a 6-bit binary number.
A, Active-LOW output drives a common-cathode LED display.

SECTION 6-4 Encoders
Lia) Ag= LA =LA =04, =1
(b} No, this is not a valid BCD code.
{c} Only one input can be active for a valid cutput.
2(a) Ay =04, = LA, = 1,4,=1
(b) The output is 0111, which is the complement of 1000 (8},

SECTION 6-7 Code Converters

1. 10000101 (BCD) = 1010101,

2. An B-bit binary-to-Gray converter consists of seven exclusive-OR gates in an arrangement like that
in Figure 646,

SECTION -8 Multipl (i Seloctors)

1. The output is 0.
2. (8) 7TALS157: Quad 2-input datn selector
{b) 74LS151: B-fnput data selector

3. The data output alternates between LOW and HIGH as the data-select inputs sequence through the
hinary states.

FUNCTIONS OF COMBINATIONAL LOGIC = 263

4. i} The T4HC157A multiplexes the two BCD codes to the T-segment decoder.
(b) The TALS4E decodes the BCD 1o encrgize the display.
(e} The T4LS139 enables the T-segment displays aliemnately.

SECTION 6-9 Demultiplexers

1. A decoder can be used as a mubiplexer by using the input lines for data selsction and an Enable line
for data inpat. .
2. The outpats zre all HIGH except Dy, which is LOW.

SECTION 6-10 Parity Generators/Checkers
1. () Even parity: 1110100 (b) Even parity: 001100011
2. (n) Odd parity: 11010101 {b) Odd parity: 11000001
3. (a) Code is comect, four 15,
(b} Code is in ervor, seven 1s

SECTION 6-11 Glitches in Decoder Circuits

1. A glitch is a very short-duration voltage spike (usually unwanted),
2. Glitches are caused by transition states,
3. Strobe is the enabling of a device for a specified period of time when the device is not in transition,

SUPPLEMENTARY PROBLEMS FOR EXAMPLES

61 E=1Cy=1 62 L=0I=0E=1L=I
63 1011 + 1010 = 10101 4 See Figure 6-85. 6-5 See Figure 6-86.

e

* FIGURE &é-85%

I
——
TTTT

Ll
] 2
3
4

Lawent-cedder adder Mighest-onler sdder

TTTT

H_
TTTT

[ENEN

IINEEERE

‘—l (NN
o
B

» FIGURE 6-86 Agu 1 0
By=0
0= et cpuaal
A=0
Ai=1 n

264 ®w DIGITAL FUNDAMENTALS

66 AZB=0A=8=0A<B=1 =7 See Figure 6-87.
6-8 See Figure 6-88. 69 Quiput 22 6-10 See Figure 6-89.

= FIGURE §-87 o _ N o=
-]‘ - e q
. - = =
b i TEY] S] EEY] S) Py | .
aaf aeaftacs aesf—dacs aeaf—
FEY) Ack Aok b facn ERY] =
= s p
= 1 e s
s .
Nirwrm iy dder gt onier sibbes

A FIGURE 6-88

4 FIGURE 6-B%

6-11 Al inpats LOW: Ay = 0,4, = 1,4, =], 4, = 0
All inputs HIGH: All outputs HIGH.
612 BCD 01000001
L ooooc001 1

(01000 40
Binary O0OLOIO01 41

6=13 Seven exclusive-OR gates 614 Seec Figure 6-90,

» FIGURE &-90 Sot B IR
sE L LT 1 i
| g

615 Dy Sy = 0,5 = 0.5, =0.5,=0
Di8=0,85=15=05=0
De§=1.5=05=05=0
DpSH=LE=15=05%=1

FUNCTIONS OF COMBINATIONAL LOGIC ® 265

616 See Figure 6-91. 6-17 SeeFigure 6-92. 6-18 See Figure 6-53.

-EH MUX

b FIGURE &-%1

2z
S
e
(=3
2

b P Ao s Aphahy s At Ay

Yy ——

TaLsisL

B FIGURE 6-92

Ay [
I
H PR APV
; AT A AL AdA
? A AR A+ Ay Ay
LI
» FIGURE 6-93 Y e e Eian | !
5y 71 H
1 — 1 =
b 1
Dl : H
Dxi_J—.J:_ I
- S P T N N S
SELF-TEST

L e 2 (e) 3w 4. 5. to) 6. T &
9.0c) 1) 1L @ 1L I 4D

Fup-FLOPS

CHAPTER OBJECTIVES

Use logic gates to construct basic latches

= Explain the difference between an $-R latch and a D latch
= Recognire the difference between a latch and a flip-flop

n Explain how 5-R, D, and J-K flip-flops differ

® Explain how edge-triggered and master-slave flip-flops differ

® Unde d the signific a! dahnm-uplme

hold time, y. clock pulie
widths, and power dlmpalmn in I.h: application of flip-flops
 Apply flip-flops in basic apphications %

Analyze circuits for race conditions and the occurrence of ™
glitches

LATCHES

INTRODUCTION

In the previous chapters, you have studied combinational
logic. This chapter begins a study of the fundamentals of
sequential logic. Bistable multivibrator devices are covered in
this chapter. Two categories of bistable devices are the latch
and the flip-flop. Bistable devices have two stable states,
called SET and RESET; they can retain either of these states
indefinitely, making them wieful 2 storage devices. The basic
difference between latches and flip-flops is the way in which
they are changed from one state to the other. The flip-flop
is a basic building block for counters, registen, and other
sequential control logic and is used in certain types of
memories. The clock is used as the basic system timing signal
for advancing the sequential logic through it states.
Sequential logic will be covered in Chapter 8.

The latch is a type of temporary storage device that has two stable states (bistable) and is
normally placed in a category separate from that of flip-flops. Latches are basically similar
10 flip-flops because they are bistable devices that can reside in either of two states using a
feedback arrangement, in which the outputs are connected back to the opposite inputs. The
main difference between latches and flip-flops is in the method used for changing their state,

After completing this section, you should be able to

® Explain the operation of 2 basic S-R latch = Explain the operation of a gated S-il lawch
= Explain the operation of a gated D latch = Implement an 5-R or D latch with logic gates
® Describe the T4LS279 and 741575 quad latches

The S-R (SET-RESET) Latch

A latch is a type of bistable logic device or multivibrator. An active-HIGH input 5-R
(SET-RESET) larch is formed with two cross-coupled NOR gates as shown in Figure 7-1(a);
an active-LOW input S-R latch is formed with two cross-coupled NAND gates os shown in
Figure 7-1(b). Notice that the output of each gate is connected to an input of the opposite
gate, This prod the ive feedback that is ch istic of all lawches and

flip-Nops.
| % | %:
0 i
5 —{ H 2
() Active-HIGH input S-R luch by Active-LOW input 5-R Laich
 FIGURE 7=1

Twa versions of SET-RESET (5-R) Latches

To explain the operation of the latch, we will use the NAND gate 5-R latch in
Figure 7=1(b). This latch is redrawn in Figure 7-2 with the negative-OR equivalent symbols
used for the NAND pates. This is done because LOWs on the § and R lines are the activating
inpuis. i

“The latch in Figure 7-2 has two inputs, § and B, and two outputs, {0 and . Let us start by
assuming that both inputs and the (2 output are HIGH. Since the 0 output is connected back 10
an input of gate G, and the R inpit is HIGH, the output of G» must be LOW. This LOW
output is coupled back to an input of gate G, ensuring that its cutput is HIGH.

» FIGURE 7-2

When the @ output is HIGH, the latch is in the SET state, It will remain in this state indefi-
nitely until o LOW is temporanly applied to the R input. With a LOW on the R inpul and a
HIGH on . the output of gate G, is forced HIGH. This HIGH on the @ output is coupled back
1o an input of €, and since the § input is HIGH, the output of G, goes LOW. This LOW on
the @ output is then coupled back to an input of G, ensuring that the @ output remains HIGH
even when the LOW on the R input is removed. When the @ output is LOW, the latch he
RESET state. Now, the laich remains indefinitely in the RESET state until a LOW is applied
to the § inpur.

In pormal operation, the ouputs of a latch are always complements of each other.

When @ is HIGH, @ is LOW, and when @ is LOW, @ is HIGH

An invalid condition in the operation of an active-LOW input S-R lateh occurs when
LOWSs are applied to both § und R at the same time. As long as the LOW levels are simultane-
ously held on the inputs. bath the @ and @ outputs are forced HIGH. thus violating the basic
complementary operation of the outputs. Also, if the LOWSs are released simultanecusly, both
outputs will auempt to go LOW. Since there is always some small difference in the propaga-
tion delay time of the gates, one of the gates will dominate inits transition 1o the LOW ouipus

FLIP-FLOPS

267

268 ® DIGITAL FUNDAMENTALS

state. This, in turn, forces the output of the slower gate to remain HIGH. In this situation, you
cannot reliably predict the next state of the latch.

Figure 7-3 illustrates the active-LOW input 5-R latch operation for each of the four pom-
ble combinations of levels on the inputs. (The first three combinations are valid. but the last is
not.) Table 7-1 summarizes the logic operation in truth table form. Operation of the active-
HIGH input NOR gate latch in Figure 7-1(a) is similar but requires the use of opposite logic

levels.

FIGURE 7-3

Momertary LOW
i

state afier §
| = _ goes back HIGH.
P
s |t
(HIGH)

Larch saarws out RESET (@ = 0y

Latch starts ol SET Q= 1)

(a) Two passshilities for the SET operation

transitions when &

goes back HIGH.

Lapch stans out SET (¢ = 1)

goes LOW and remain
in same state afier &

No transitions oceur

becawse latch is

already RESET.
Latch wtasts out RESEL 1) = 04

(b Two possibilities for the RESET operation

Outputs do

oot change

sate, Lutch

remains SET if

previously SET snd
& remains RESET il

previously RESET.
HIGH on beah inpats

gl No-change condition

TABLE 7-1

Ohatput states

are uncertain when
input LOWs go

i back HIGH.

1) Invalid condition

Truth table for 5-R latch

INPUTS

QUTPUTS. .
Q

COMMENTS
No change. Latch remains in present state,
Latch SET

Latch RESET

Tnwalid comdition

FLIP-FLOPS = 259

Logic symbols for both the sctive-HIGH input and the active-LOW input latches are shown

in Figure 7.
~ FIGURE 7-4
Logic symbols for 5-R and 5-R latch —1s 0 i—d5 — ¢
— & b— ¢ e L P}
ta) Active-HIGH input 1) Active-LOW input
5-R latch SR

Example 7-1 illustrates how an active-LOW input 5-R laich responds to conditions on its
inputs, LOW levels are pulsed on cach input in a certain sequence and the resulting ¢ output
waveform is observed. The § = 0, 8 = 0 condition is avoided because it results in an invalid
mode of operation and is a major drawback of any SET-RESET type of luch.

I EXAMPLE o
If the § and R waveforms in Figure 7-5(n) arc applied to the inputs of the latch in

Figure 7-4(b), determine the waveform that will be observed on the £ output.

Assume that (is initially LOW.
~ : . - -
il |- - L
1 1 1 1
1 1 1 1
1 k] 1
- 1 i] T 1
w fo — i =)
1 1 1 1 1] 1
[} 1 1 1 i]]
[B S ! [R
by &] | | ' i

+ FIGURE 7-5

Solution See Figure 7-5(b).

Supplementary Problem Determine the (0 output of an active-HIGH input S-R latch if the waveforms in
Figure 7-5(u) arc inverted and applied (o the inputs.

Application Example

The Latch as a Contact-Bounce Eliminater A good example of an application of an SR
fatch is in the elimination of mechanical switch contact “bounce.” When the pole of a switch
strikes the comact upon switch closure, it physically vibrates or bounces several times before
finally making a solid contact. Although these bounces are very short in duration, they
produce voltage spikes it are oiten not acceptable in a digital system. This situation is
illustrated in Figure 7-6(a).

270 ® DIGITAL FUNDAMENTALS

*Voo

+V
i ")
1
0
Erratic transition voltage
o i e 1o contact bonee

AAA
Yy
b

1)
)
L~]

|
Fosition

2

e (=3 ‘?
k1]
-]

Lol
[} Switch coniact boance ib) Contact-bounce climinator careuit

A FIGURE 7-&

An S-R latch can be used to eliminate the effects of switch bounce as shown in
Figure 7-6(b). The switch is normally in position 1, keeping the R input LOW and the latch
RESET. When the switch is thrown to position 2, R goes HIGH because of the pull-up resistor
to Voo, and § goes LOW on the first contact. Although § remains LOW for only a very short
time before the switch bounces, this is sufficient to set the latch. Any further voltage spikes on
the § input due to switch bounce do not affect the latch, and it remains SET. Notice that the
Q output of the latch provides a clean transition from LOW o HIGH, thus eliminating the
voltage spikes caused by contact bounce. Similarly, a clean transition from HIGH to LOW is
made when the switch is thrown back to position 1.

A SET-RESET LATCH

The 7415279 is a quad S-R latch represented by the logic diagram of Figure 7-7(a) and the
pin diagram in part (b). Notice that two of the latches each have two 5 inputs,

@ I
——q 51

[El)
—a 152 ——— 1¢ Lo o pe

LI Vee 45 4R 4Q 382

[16] [15] [l [13] [i2] [n] [io] [9]

B i) 2

4 0

[&]] 20
UL “—2

12 9
—0:“': i - 3Q .

i 0T 2] 1 4 O] [T 18]
— g4 (13 ik IS1 082 1@ M I 20 GND
14y — 40
AR () Pin disgram
ia) Logic diagram

FIGURE 7-7

The Gated 5-R Latch

A gated latch requires an enable input, EN (G is also used to designate an enable input). The
logic diagram and logic symbol for a gated S-R latch are shown in Figure 7-8. The § and B
inputs control the state to which the latch will go when a HIGH level is applied to the EN
input. The latch will not change until EV is HIGH, but s long as it remains HIGH, the output
is comrolled by the state of the § and K inputs. In this circuit, the invalid state occurs when

both § and R are simultaneously HIGH.

= FIGURE 7-8
A gated $-R latch

EN —

{a) Logic diagrum by Logic symbol

' I EXAMPLE 7-2 i
Determine the @ output waveform if the inputs shown in Figure 7-9{a) are applied to a

gated S-R latch that is initially RESET.

FLIP-FLOPS

b}y

4 FIGURE 7-%

i
S E—— .
i
i
i
|
L

5

= 2N

Solution The @ waveform is shown in Figure 7-%(b). Anytime § is HIGH and R is LOW, a HIGH on
the EN input sets the latich. Anytime § is LOW and R is HIGH, a HIGH on the EN input

resets the latch.

Supplementary Problem Determine the output of a gated 5-R latch if the § and R inputs in Figure 7-9(a) are
inverted.

The Gated D Latch

Another type of gated latch is called the D latch. It differs from the S-R laich because it has
only one input in addition to EN. This input is called the D (data) input. Figure 7-10 contains
a logic diagram and logic symbol of a D laich, When the 2 input is HIGH and the EN input
is HIGH, the latch will set. When the D input is LOW, and EN is HIGH, the latch will reset.

Stated another way, the output @ follows the input D when EN is HIGH.

272 = DIGITAL FUNDAMENTALS

IEXAMPLE 7-3

" —e ,
0 — D —— ¢
£V — e
3 .
o}
(3) Logic dizgram (b} Logic symbal
& FIGURE T-10
A gated D latch
Dy ine the output form if the inputs shown in Figure 7-11(a) are applied to a
gated D laich, which is initially RESET.

1 |

& FIGURE 7-11

Solution The {} waveform is shown in Figure 7-11(b). Whenever D is HIGH and EN is HIGH,
(2 goes HIGH. Whenever D is LOW and EN is HIGH, @ goes LOW. When EN is LOW, the
state of the latch is not affected by the D input.
Suppl; ¥ Problem Dy ine the @ output of the gated D latch if the D input in Figure 7-11(a) is inverted.
A D LATCH

An example of a gated D latch is the 74L575 represented by the logic symbol in
Figure 7-12(a). This device has four latches. Notice that each active-HIGH EN input is shared
by two latches and is designated as a control input (C). The truth wble for each latch is shown
in Figure 7=12(b). The X in the truth table represents a “don’t care™ condition. In this case,
when the EN input is LOW, it does not martter what the D input is because the outputs are

unaffected and remain in their prior states.

FLIP-FLOPS

2 i1
w22 i i
in
13 l p— B
i (151 g
2 p—— [
N 1141 4
hi 1} R p—120
] im 3 0 1 i} 1 RESET
W — v Lo 10| SET i
4 03 oﬁ. 30 X 0 @ @ | Nochange 4
EN 19) A
c4 40
NOTE: (, 1s the prioe cutput level befone the
(7 B - =
PR P L] I indicated input cosditions were extablished
() Logic symbol) Truth table (each latch)

4 FIGURE 7-12

= 273

1. List three types of latches.
Answers are at the end of 2. Develop the truth table for the active-HIGH input $-R latch in Figure 7=1{a).
the chapter. 3. What is the Q output of a D latch when EN =1 and D =17

92277 EDGE-TRIGGERED FLIP-FLOPS

Flip-flops are synchronous bistable devices, also known as bistable m!nnbm:m In this
case, the term synchronous means that the output changes state only at a specified point on a
triggering input called the clock (CLK). which is designated as a control input, C; that is,
changes in the output oceur in synchronization with the clock.

After completing this section, you should be able to

» Define clock w Define edge-triggered flip-flop w Explain the difference between a
ﬂ:p—flop and a laich ® ldentify an edge-triggered flip-flop by its logic symbol

iscuss the difference between a positive and a negative edge-triggered flip-flop

cuss and compare the operation of 5-R., D, and J-K edge-triggered flip-flops and
explain the differences in their truth tables @ Discuss the asynchronous inputs of a flip-
flop = Describe the T4AHCT4 and the 74HC112 flip-Mlops

An edge-triggered Mip-Mlop changes state either at the positive edge (rising edge) or at the
negative edge (falling edge) of the clock pulse and is sensitive to its inputs only at this transi-
tion of the clock. Three types of edge-triggered Mip-Mops are covered in this section: 5-R, D,
and J-K. Although the 5-R flip-flop is not available in IC form, it is the basis for the D and
J-K flip-flops and is, therefore, important to cover. The logic symbols for all of these
flip-Mlops are shown in Figure 7-13. Notice that each type can be either positive edge-
triggered (no bubble at C input) or negative edge-triggered (bubble at C input). The key to
identifying an edge-triggered flip-flop by its logic symbol is the small tiangle inside the
block at the clock (C) input. This triangle is called the dynamic input fndicator =,

274 = DIGITAL FUNDAMENTALS

: FIGURE 7-13

Edge-triggered Mp-flop logic
symbol

A 3R flip-flop cannot
have both 5 and R inputs
HIGH at the same time.

—s 0 —\p — —A —0¢
—Ffc —tfc —

—r pP—0 p—0 —x —
— s U — P e -4 &
—a=c —gc —=

—ir p—0 b—0 —x p—0
i) 5-R ik D i) K

The Edge-Triggered S-R Flip-Flop

The S and R inputs of the S-R Mip-fop are called synchronous inputs because data on these
inputs are transferred to the flip-flop’s output only on the riggering edge of the clock pulse.
When § is HIGH and R is LOW, the (output goes HIGH ‘on the triggering edge of the clock
pulse, and the flip-flop is SET. When § is LOW and R is HIGH, the @ output goes LOW on
the triggering edge of the clock pulse, and the flip-flop is RESET. When both § and R are
LOW, the output does not change from its prior state. An invalid condition exists when both
5 and R are HIGH,

‘This basic operation of a positive edge-triggered flip-flop is illustrated in Figure 7-14, and
Table 7-2 is the truth wable for this type of flip-flop. Remember, the fdip-Tap cannor change
state except on the triggering edge of a clock pulse. The § and R inputs can be changed at any
time when the clock input is LOW or HIGH (except for a very short interval around the
triggening transition of the clock) without affecting the output.

gt o1
1 5 “;k o 5 o :
u 0 g 'y
ak Lo bo fi. —Fc
fy T
n—r o— ¢ | — R b—0
{ay §= 1. R =0 flip.Nop SETS on positive clock (b} S =0, R = 1 Mip-fop RESETS on positive
edge. (If already SET. it remains SET.) chock edge. (If already RESET, it remains
RESET.)
e [0 = 0 tna change)
e —+ ¢
fa
s L pr—

{c) §=0.R=01lip-flop does not change. (If SET, it
remains SET: if RESET. it remains RESET.|

+ FIGURE 7-14

Qperation of a positive edge-triggered 5-R flip-flop

» TABLE 7-2

FLIP-FLOPS = 275

Truth table for a positive edge-
triggered 5-R flip-flop

-~ INPUTS
R

COMMENTS

(1] 0 X No change
0 I T RESET

1 0 i SET

i 1 T Invalid

T = clock wansision LOW 10 HIGH
X = irrzlevant (“doa’t cam™}
O = outpit keved ooy 1o cloek rslson

The operation and truth table for a negative edge-triggered 5-R flip-flop are the same
as those for a positive edge-triggered device except that the falling edge of the clock pulse

is the triggering edge.

[lmupl.z -8

Solution

Determine the @ and 0 output waveforms of the flip-flop in Figure 7-15 for the 5, R, and
CLK inputs in Figure 7-16(a). Assume that the positive edge-triggered flip-flop is initially

RESET.

» FIGURE 7-15

i
1
'
'
i
T
'
:
|
[EV -
1
'
'
'
i
]
T

o' T 1]
® o J

4 FIGURE 7-16

1. Atclock pulse 1, §is LOW and R is LOW, so O does not change.
2. Atclock pulse 2, 5 is LOW and R is HIGH, so (remains LOW (RESET).
3. Atclock pulse 3, 5 is HIGH and R is LOW, so 0 goes HIGH (SET).

276 ® DIGITAL FUNDAMENTALS

4. Atclock pulse 4, S is LOW and R is HIGH, so @ goes LOW (RESET).
5. Atclock pulse 5, § is HIGH and R is LOW, so (goes HIGH (SET).
6. At clock pulse 6, § is HIGH and R is LOW, so @ stays HIGH.
Once is determined, Q is easily found since it is simply the complement of Q. The
resulting waveforms for @ and @ are shown in Figure 7-16(b) for the input waveforms in
part ().

Suppl y Probl D ine (and @ for the § and R inputs in Figure 7-16(a) if the flip-flop is a negative
edge-triggered device,

A Method of Edge-Triggering

A simplified implementation of an edge-triggered 5-R flip-flop is illustrated in Figure 7-17(a)
and is used to demonstrate the concept of edge-triggering. This coverage of the S-R flip-flop
does not imply that it is the most important type. Actually, the D flip-flop and the J-K flip-flop
are available in IC form and more widely used than the 5-R type. However, understanding the
5-R is important because both the D and the J-K flip-flops are derived from the S-R flip-flop.
Notice that the S-R flip-flop differs from the gated 5-R latch only in that it has :lpu!s: Imnsl-
tion detector. This circuit prod a very short-duration spike on the positive-going

of the clock pulse.

One basic type of pulse transition detector is shown in Figure 7-17(b). As you can sce,
there is a small delay on one input 1o the NAND gate so that the inverted clock pulse arrives at
the gate input a few nanoseconds after the true clock pulse Tlus produces an output spike
with a duration of only a few is. In & neg ggered flip-flop the clock
pulse is inverted first, thus producing a narrow spike on the m:ganw—gm ng edge.

Notice that the circuit in Figure 7-17 is partitioned into two sections. one labeled Steering
gates and the other labeled Latch. The steering gates direct, or steer, the clock spike either 1o
the input to gate G, or to the input to gate G, depending on the state of the § and R inputs. To
understand the operation of this flip-flop, begin with the assumpiions that it is in the RESET
state (Q = 0) and that the 5, R, and CLK inputs are all LOW. For this condition, the outputs of
gate G, and gate G are both HIGH. The LOW on the (0 output is coupled back into one input
of gate G,, making the @ output HIGH. Because (0 is HIGH, both inputs to gate G, are HIGH

* FIGURE T-17
Edge triggering

CLK Pulse
eransition
detector

Steering gates Latch
tah A simplified logic diagram for a positive edge-triggered 5-R Qip-Nop

Skont pulse (spike) produced by delay
Ddl)‘—‘ iwhen both gase inputs sre HIGH)

ih} A type of pulse transition detector

(remember, the output of gate G, is HIGH), holding the (2 output LOW. If a pulse is applied tw
the CLK input, the outputs of gates G, and G remain HIGH because they are disabled by the
LOWSs on the § input and the & input; therefore, there is no change in the state of the flip-
flop—it remains in the RESET state.

Let us now make § HIGH, leave R LOW, and apply a clock pulse. Because the § input to
gote G is now HIGH, the output of gate G| goes LOW for a very shont time (spike) when
CLK goes HIGH, causing the @ output to go HIGH. Both inputs o gate G4 are now HIGH
(remember, gate G, output is HIGH becouse R is LOW), forcing the (F output LOW. This
LOW on is coupled back into one input of gate €. ensuring that the @ output will remain
HIGH. The flip-flop is now in the SET state, Figure 7-18 itlustrates the logic level transitions
that take place within the flip-flop for this condition.

FLIP-FLOPS

* FIGURE 7-18 This gate is enabled This spilke SETS Mip-Tlop
s

. . HIGH i1
Triggering 03

edge
\ Palsz

Ly
ko [T e

L3
LEVA iy

This gate is disabled because i is LOW

Mext, let us make § LOW and & HIGH and apply a clock pulse. Because the R input is now
HIGH, the positive-going edge of the clock produces a negative-going spike on the output of
gate Gy, causing the @ output 1o go HIGH. Because of this HIGH on @, both inputs to gate G,
are now HIGH (remember, the output of gate G, is HIGH because of the LOW on 5). forcing
the @ output to go LOW. This LOW on @ is coupled back into one input of gate Gy, ensuring
that 2 will remain HIGH. The flip-flop is now in the RESET state. Figure 7-19 illustrates the
logic kevel transitions that occur within the flip-flop for this condition. As with the gated latch,
an invalid condition exists if a clock pulse occurs when both § and R are HIGH at the same
time. This is the major drawback of the 5-R flip-flop.

= FIGURE 7-1% This gase 15 disabled
because § is LOW

Toggenng ! Higt

wilge

AN
CLK ¢ 1

This gate is enabled

= 277

278 m DIGITAL FUNDAMENTALS

The Edge-Triggered D Flip-Flop

The D flip-flop is useful when a single data bit (1 or 0) is 10 be stored. The addition of an
inverter to an S-R flip-flop creates a basic D flip-flop, as in Figure 7-20, where a positive
edge-triggered type is shown.

* FIGURE 7-20

=

>

Notice that the flip-flop in Figure 7-20 has only one input, the D input, in addition to the
clock. If there is a HIGH on the D input when a clock pulse is applied, the flip-flop will set,
and the HIGH on the D input is stored by the flip-flop on the positive-going edge of the clock
pulse. If there is a LOW on the £ input when the clock pulse is applied, the flip-flop will
reset, and the LOW on the D input is stored by the flip-flop on the leading edge of the clock
pulse. In the SET state the flip-flop is storing a 1, and in the RESET state it is storing a ().

The logical op ion of the positi dge-triggered D flip-flop is summarized in
Table 7-3. The operation of a negative edge-triggered device is, of course, the same, except
that triggering occurs on the falling edge of the clock pulse. Remember, Q follows D ar the

— ¢

active or triggering clock edge.
= TABLE T7-1
COMMENTS
1 i 1 0 SET (stores a 1)
0 T 0 1 RESET (stores a (1)

T = clock transitian LOW to HIGH

T T DT DA AR TIIR

Imupl.s 7-5 T
Given the waveforms in Figure 7-21(a) for the D input and the clock, determine the Q i

output waveform if the flip-flop starts out RESET.

CLK’J.__‘ y _: “'_Iu L] N
@ D] i L

1 : _h:_h_ —FC
: i

»e_| | L -

A FIGURE 7-21

Solution The Q output goes to the state of the D input at the time of the positive-going clock edge.
‘The resultant output is shown in Figure 7-21{b).

Suppl Probi Dx ine the @ output for the D flip-flop if the D input in Figure 7-21(a) is inverted.

The Edge-Triggered J-K Flip-Flop

The J-K flip-flop is versatile and is o widely used type of flip-flop. The J and K designations
for the inputs have no known significance excepd that they are adjacent letters in the alphabet.

The functioning of the I-K flip-flop is Jdcm'lcal 1o that of the S-R flip-flop in the SET,
RESET, and no-change condi of op The diff iy thar the J-K flip-flop has no
irvalid state as does the S-R flip-flop.

Figure 7-22 shows the basic internal logic for a positive edge-triggered J-K flip-flop.
Notice that it differs from the S-R edge-triggered flip-flop in that the Q output is connected
Dack to the input of gate G, and the £ output is connected back to the input of gate G,. The
two inputs are labeled J and K. A J-K flip-flop can also be of the negative edge-triggered type,
in which case the clock input is inverted.

- FIGURE 7-22

CLE —

Let us assume that the flip-flop in Figure 7-23 is RESET and that the J input is HIGH and
the K input is LOW rather than as shown. When a clock pulse occurs, a leading-edge spike
indicated by (D is passed through gate G, because 0 is HIGH and J is HIGH. This will canse
the Latch portion of the flip-flop to change to the SET state.

= FIGURE 7-23

HIGH

transition
detector

LY
HIGH

‘The flip-flop is now SET. If you now make J LOW and K HIGH, the next clock spike indi-
cated by (D) will pass through gate G, because (0 is HIGH and K is HIGH. This will cause the
latch portion of the flip-flop o change to the RESET state.

Now, if o LOW is applied 1o both the J and K inputs, the flip-flop will stay in its present
state when a clock pulse ocears. So, o LOW on both J and K results in a no-change condition,

So far, the Jogical operation of the J-K Mip-flop is the same as that of the 5-R type in the
SET, RESET, and no-change modes. The difference in operation occurs when both the J and
K inputs are HIGH. To see this, assume that the flip-Clop is RESET. The HIGH on the
@ enables gate Gy, 5o the clock spike indicated by (3) passes through to set the flip-flop. Now,
there is a HIGH on (7, which allows the next clock spike to pass through gate G, and reset the
lip-flop.

As vou can see, on each successive clock spike, the flip-flop changes to the opposite state,
This mode is called toggle operation. Figure 7-23 illustrates the tr:msmons when the flip-flop
is in the toggle mode. A I-K flip-flop d for toggle is i called a
T flip-flap.

FLIP-FLOPS

= 279

280 = DIGITAL FUNDAMENTALS

Table 7—4 summarizes the logical operation of the edge-triggered I-K flip-flop in truth

table form. Notice that there is no invalid state as there is with an 5-R flip-flop. The truth table
for a negative edge-triggered device is identical except that it is riggered on the falling edge
of the clock pulse.

= TABLE 7-4
Truth table for a positive edge=
triggered J-K flip-flop

INPUTS OUTPUTS
1 qQ G | cOMMENTS
0 0 T @ @ No change
0 1 T 0 1 RESET
1 (] T 1 0 SET
1 1 T Oa & Toggle

T = clock transitsom LOW w0 HIGH

2 = cauipst level prian 1 chock anitivn

| EXAMPLE 7-6
The waveforms in Figure 7-24(a) are applied to the J, K, and clock inputs as indicated.

Iy the 0 output, ing that the flip-flop is initially RESET.
' -
CLK o 1D 3—:_] I
St : : ; S o P
. s
I S | i
=) L o : l : i .In_ .
: | i i | _
1 | I | I — K b—
1 be— . r i
ih ¢ m— ' L =) | |
Mozl » Heset Ser Set
change
A FIGURE 7-24
Selution 1. First, since this is a negative edge-triggered flip-flop, as indicated by the “bubble” at the

| i

w

i

e

Th

clock input, the @ output will change only on the negative-going edge of the clock
pulse.

At the first clock pulse, both J and K are HIGH; and because this is a toggle condition,
(@ goes HIGH.

. At clock pulse 2, 4 no-change condition exists on the inputs, keeping @ at a HIGH level.
. When clock pulse 3 occurs, Jis LOW and K is HIGH, fting in a RESET liti

Q goes LOW.
Atclock pulse 4, Jis HIGH and K is LOW, resulting in a SET condition; 0 goes HIGH.

A SET condition still exists on J and & when clock pulse § oceurs, so Q will remain
HIGH.

¢ resulting @ waveferm is indicated in Figure 7-24(b).

FLIP-FLOPS = 281

Supplementary Problem Determine the @ output of the I-K flip-flop if the J and X inputs in Figure 7-24(2) arc
imverted.

I EXAMPLE 7-7 .
The waveforms in Figure 7-25(a) arc applied to the flip-flop as shown. Determine the

@ output, starting in the RESET state.

ST M r1r |
J | i I
! S A
S | ! i i —s — o
= ' ! H ;
i | ! i ;
Ko i o i —pc
p | - H |
o A
! ! | ' ! — & p— ¢
i I 1
e | i !
iy = L
FIGURE 7-25

Solutionn The @ output assumes the state determined by the states of the J and K inputs at the posi-
tive-going edge (triggening edge} of the clock pulse. A change in J or K afier the triggering
edge of the clock has no effect on the output, as shown in Figure 7-25(b).

Supplementary Froblem Interchange the J and K inputs and determine the resulting (output.

Asynchronous Preset and Clear Inputs

For the flip-flops just discussed, the 5-R, D, and J-K inpuwis are called synchronons inputs
because data on these inputs are transferred to the flip-flop’s output only on the triggening
edge of the clock pulse; that is, the data are transtermred synchronously with the clock.

Most integrated cireuit flip-flops also have asynchronous inputs. These are inputs that
affect the sute of the Mip-Mop independent of the cfock. They are normally Tabeled preset
(PRE} and clear (CLR), or direct set (5;) and direct reset (Rp) by some manufacturers. An
active level on the preset input will set the flip-flop, and an active level on the clear input will
reset it. A logic symbol for a J-K flip-flop with preset and ¢lear inputs is shown in
Figure 7-26. These inputs are active-LOW, as indicated by the bubbles, These preset and clear
inputs must both be kept HIGH for synchronous operation.

FIGURE 7-2¢& PR
Logic symbol for a J-K flip-flop with
active-LOW preset and clear inputs P .
—
R b—

282 w DIGITAL FUNDAMENTALS

Figure 7-27 shows the logic diagram for an edge-triggered J-K flip-flop with active-LOW
preset (PRE) and clear (CLR) inputs. This figure illustrates basically how these inputs work,
As you can see, they are connected so that they override the effect of the synchronous inputs,
J. K, and the clock.

= FIGURE 7-27 3
Logic diagram for a basic J-K flip-
flop with active-LOW preset and ! e o
clear inputs
Pulse
CLE —{ transition f—-=
detestor
. s
R

'EXAMPI.E 7-8
For the positive edge-triggered J-K flip-flop with preset and clear inputs in Figure 7-28,

determine the Q' output for the inputs shown in the timing diagram in part (a) if @ is

initially LOW.
HIGH PRE
b
N | ¢
> C
o
[h—
CLE
I NG
CLK _ frl] | 1'5-'_ 4L T [_ist
1 1 1 1
1 1 1 1
_— - 1 1 1 _—
FRE |1]] i
1 il 1 1 1
1 [i 1 1
—_ 1+ + |
m CLE | i] i T S
H i] i I
e !) I N I S

e Clear —+]

i

A FIGURE 7-28

Solution 1, During clock pulses 1, 2, and 3, the preset (PRE) is LOW, keeping the flip-flop SET
regurdless of the synchronous J and K inputs.

284 = DIGITAL FUNDAMENTALS

FIGURE 7-30 i
1PRE A
2 3 5
2, LI
il
ICLKE —)Q)C
e . © 5
(151 |
ICILR 0y |PRE [F4] § 151
WRE Ty °
IcLk —
12 5 9 I
B, 2 20 ML i LT
[GEar k
13 oo U0
wk e WRE) 9,
pygpLin
. i NI g 13
e LM H N i
wgl P
T (L] ek —f
() Individual kgic symbols (b} Single block logic symbol

|ExﬁMPLE o o . - — — S
‘The 11, 1K, ICLK, IPRE, and | CLR waveforms in Figure 7-31(a) are applied to one of

the negative edge-triggered flip-flops in a 74HC112 package. Determine the 10 output

waveform.

Fal LKy C

1 1

MR s |

1 1

Pin3 (1K) H

—_— [}

P (FRE |

(w P18 OCER))]

1 1

=

ih) Pin 5 [[J Qe —

- FIGURE 7-31

Soluti The resulting 1 waveform is shown in Figure 7-31(b). Notice that cach time a LOW is
applied to the | PRE or 1CLR. the flip-flop is set or reset regardless of the states of the
other inputs.

i v Problem Determing the 10 owpit waveform if the waveforms for I1PRE and 1CLR are inter-
changed.

286 m DIGITAL FUNDAMENTAL®

TABLE 7-5
Truth table for the master-slave
1K flip-flop

FIGURE 7-33
Pube-triggered (master-slave)
JK flip-flop logic symbols

| EXAMPLE 7-10

Solution

The master section will assume the state determined by the J and X inputs beginning at the
leading (positive-going) edge of the clock pulse. The state of the master section is then trans-
femed to the slave section on the trailing edge of the clock pulse because the outputs of the
master are applied to the inputs of the slave and the clock pulse to the slave is inverted. At the
trailing edge of the clock pulse, the state of the slave then appears on the @ and O outputs.
The O output is connected back to an input of gate G- and the @ output is connected back o
an input of gate G| to produce the characteristic toggle operation when J = | and K = 1. The
logic operation is summarized in Table 7-5. One limitation to master-slave operation is that
the inputs (J and K) cannot change while the clock pulse is active because the state of the
master latch can change during this time.

INPUTS OUTPUTS
J K 3 l COMMENTS
0] 1 [[} (e No change
(] 1 I | o 1 RESET
1 0 JL [1 0 SET
1 1 1 [[[} Toggle
T chock pulse

@, = outpus level before clock pulse

The logic bols for the J-K master-slave flip-flop are shown in Figure 7-33. The key to
identifying a pulse-triggered (master-slave) flip-flop by its logic symbol is the ANSIIEEE
postponed outpur symbol (1) at the outputs. This symbol means that the output does not
reflect the J-K input data until the occurrence of the clock edge (either positive-going or nega-
tive-going) following the triggering edge. Notice that there is no dynamic input indicator (&>)
at the clock (C) input as there is for an edge-triggered flip-flop.

— v - B

—_— —qc

— K p—ve — % Ip—v

{ah Active-HIGH clock: Dita are by Active-LOW clock: Data are
clocked in on positive-going edpe clocked in on negative-going
of clock pulse amd transferred o edge of clock pulse and
output on the following megative- tramsferred 1o output on the
going edge. following positive-going edge.

Determine the 2 output of the master-slave J-K flip-flop for the input waveforms shown in
Figure 7-34(a). The flip-flop starts out RESET and the clock is active-LOW.

The @ waveform is shown in Figure 7-34(b). The input states and events at the beginning
and end of cach clock pulse are labelled 1o demonstrate the operation. NC means no
change.

FLIF-FLOPS

—gc
kK ap—e
cLk . » 3 4 5 6 7 ¥
R B T T B S S A TR S Y =t S R
s, L [} 1 1 1 1 1 : :- : 1 s
y i P o | R BRE g
; it el e g
r r 1) 1 1 1 1 1 { T i ’ | 1
K o | M | any | VR HEE ER LS
[! 1 1 1 [} [} [} 1 [} 1 [1]]
[1 1 1 ! 1 1 1 [t 1 13 3 1]
R o R R 1
oo T R R - [
¢ \ T O O .| I
= T e e e I
S S S \ !
- N N O A A
=
1) S it N i RES 1Tt NE b Trpgle ——

4 FIGURE 7-34

Supplementary Problem What would the 0 output look like if the J and K waveforms were inverted?

SECTION 7-3

REVIEW 1. Describe the basic difference between pulie-triggered and edge-triggered flip-flops.

287

2. Suppose that the D input of a flip-flop changes from LOW te HIGH in the middle of a

positive-going clock pulse.
{a) Describe what happens if the flip-flop is a positive edge-triggered type.
(b) Describe what happens if the flip-flop is a pulse-triggered master-slave type.

[7=% FLIP-FLOP OPERATING CHARACTERISTICS
The p:rl‘otmmc i and limitations of flip-fops are specified by

several found on the data sheet for the device,
Gmemlly. the spml'muns are upplu:ahlr 1o all CMOS and TTL flip-flops.

After completing this section, you should be able to

= Define propagation delay time ® Explain the various propagation delay time specifica-
tions ™ Define ser-up tine and discuss how it limits flip-flop operation = Define hold
time and discuss how it limits flip-flop operation ® Discuss the significance of maximum
clock frequency = Discuss the various pulse width specifications ® Define power
dissipation and caleulate its value for a specific device » Compare various series of
flip-flops in terms of their operating parameters

288 = DIGITAL FUNDAMENTALS

Propagation Delay Times

A propagation delay time is the interval of time required after an input signal has been

applied for the resulting output change to occur, Four categories of propagation delay are

important in the operation of a flip-Mlop:

1. Propagation delay fp,y, as measured from the triggering edge of the elock pulse to the
LOW-10-HIGH transition of the output, This delay is illustrated in Figure 7-35(a).

2. Propagation delay 1, as measured from the triggering edge of the clock pulse to the
HIGH-t0-LOW transition of the output. This delay is illustrated in Figure 7-35(b).

SO point on triggering edge

,
N ' A
0K CLK # S0 poinl '
_f - — e
1]
i I
i R : 0% point oo HIGHA0-LOW
[1 #" —— 5% point on LOW-Ao-HIGH Q ! transition of @
——— trasition of @ [T
[I— [—
= v]
st Tpn,
fay by

& FIGURE 7-35
Propagation delays, clock to output
3. Propagation delay tp,p as measured from the leading edge of the preset input to the
LOW-10-HIGH ransition of the output. This delay is illusirated in Figure 7-36(a) for an
active-LOW preset input,
4. Propagation delay fpy, as measured from the leading edge of the clear input to the
HIGH-to-LOW transition of the output. This delay is illustrated in Figure 7-36(b) for an
active-LOW clear input.

= FIGURE 7-36

() by

Set-up Time

The set-up thme (1) is the minimum interval required for the logic levels to be maintained
constantly on the inputs (J and K, or § and R, or I2) prior to the triggering edge of the clock
pulse in order for the levels to be reliably clocked into the Mip-flop. This interval is illustrated
in Figure 7-37 for a D flip-flop.

* FIGURE 7-37

I3
n A 50% paimi

LK ! —_— iog cdge |
i - + pownt oo Inggenng coge
. H— | S
\ i

Sl tme s,

Hold time

The hold time (1,) is the minimum interval required for the logic levels to remain on the
inputs after the triggering edge of the clock pulse in order for the levels to be reliably clocked
into the flip-flop. This is illustrated in Figure 7-38 for a D Nip-flop.

= FIGURE 7-38 S

Maxi Clock Freg ¥y
The maximum clock frequency (f.,,) is the highest rte at which a flip-flop can be reliably
triggered. At clock fi ies above the i the flip-flop would be unable to respond

quickly enough, and its operation would be impaired.

Pulse Widths

Minimum pulse widths () for reliable operation are usually specified by the manufacturer
for the clock, preset, and clear inputs, Typically, the clock is specified by its minimum HIGH
time and its minimum LOW time.

Power Dissipation

‘The power dissipation of any digital circuit is the total power consumption of the device. For
example, if the flip-Nop operates on a +5 V de source and draws 5 mA of current, the power
dissipation is

P =V Xl =5V X 5mA = 25mW

The power dissipation is very imp in most applications in which the capacity of the
de supply is a concern. As an example. let us assume that you have a digital system that
requires a total of ten flip-flops, and each flip-Mlop dissipates 25 mW of power. The tolal
power requirement is

Ppo= 100 25 mW o= 250 mW = 025 W

This tells you the output capacity required of the de supply. If the (lip-flops operate on +5 'V
de, then the amount of current that the supply must provide is

You must use a +5 V de supply that is capable of providing at least 50 mA of current.

Comparison of Specific Flip-flops

Table 7-6 provides a comparison, in terms of the operating parameters discussed in this
section, of four CMOS and TTL Rip-flops of the same type.

FLIP-FLOPS

287

3
Ly o —
—bc
Doy
3 py N
oV
o i} [—
Dy
c . ——
Paralicl Paralict CLR I
ot data - |
pus R outpats o i__ -I
my D e Qs
c . [D‘]
1
i
]]
R LY o ——1
| P
p o
3 o b
oy D — 0. N
J Flip-laps s
CLK L ¢ cleared stowred
]
L3
R ——

1a)

4 FIGURE 7-39

This group of four flip-flops is an example of a basic register used for data storage. In digi-
tal systems, data are normally stored in groups of bits (usually eight or multiples thereof) that
represent numbers, codes, or other information. Registers are coverad in detail in Chapter 9.

Frequency Division Another application of a flip-flop is dividing (reducing) the frequency
of a periodic waveform. When a pulse waveform is applicd to the clock input of a J-K flip-
flop that is connected to toggle (/ = K = 1), the @ output is a square wave with one-half the
frequency of the clock input. Thus, a single flip-flop can be applied as a divide-by-2 device, as
is illustrated in Figure 7-40. As you can see, the flip-flop changes state on each triggering
clock edge (positive edge-triggered in this case). This results in an output that changes at half
the frequency of the clock waveform.

& FIGURE T-40 HIGH

AL

e

FLIP-FLOPS

= 291

292 ® DIGITAL FUNDAMENTALS

| EXAMPLE 7-11

Further division of a clock frequency can be achieved by using the output of one fip-fop
as the clock input to a second (lip-flop, as shown in Figure 7—41. The frequency of the
Q4 output is divided by 2 by flip-flop B. The (J output is, therefore, one-fourth the frequency
of the original clock input. Propagation delay times are not shown on the timing diagrams,

> FIGURE 7-41 HIGH HGH
; o, + P U
CLK c §| [
| U

Flip-flop A Flip-flop B

X

CLE L
I
(M I S B |
i i 1 1 1 i
1 i P '

O B e B e T ey B

By connecting flip-flops in this way, a frequency division of 2* is achieved, where n is
the number of flip-flops. For example, three flip-flops divide the clock frequency by 2' = 8y
four flip-flops divide the clock frequency by 2 = 16; and so on.

Develop the £, waveform for the circuit in Figure 7-42 when an § kHz square wave input
is applied to the clock input of flip-flop A.

HIGH
1 @ R Y I
s =4 =9 =9
...I K K K
Flip-flop A Flip-Nlop B Flip-flop C

a FIGURE 7-41

Solution The three flip-Nops are connected to divide the input frequency by eight (2" = 8) and the

S waveform is shown in Figure 7-43. Since these are positive edge-triggered flip-flops,
the outputs change on the positive-going clock edge. There is one output pulse for every
eight input pulses, so the output frequency is 1 kHe. Waveforms of @, and Qg are also
shown.

294 = DIGITAL FUNDAMENTALS

— 1 : - B
D ine the output i in relation to the clock for @, On. and O in the circuit

of Figure 7-45 and show the binary seq) T d by these
L
1
L
LA I O 4 e
CLK =g == ==
K K —K

4 FIGURE 7-45

Solution The output timing diagram is shown in Figure 7—46. Notice that the outputs change on the
negative-going edge of the clock pulses. The outputs go through the binary sequence 000,
001, 010, 011, 100, 101, 110, and 111 as indicated.

[ol o oo L |'|||:|||J

4 FIGURE T-46

Supplementary Problem How many flip-flops are required to produce a binary seq g ing decimal b
0 through 157

|
[| :EE‘\:I'::.?VN = 1. A group of flip-flops used for data storage i called a
|

2. How must a J-K flip-flop be connected to function as a dec-hy-Z devicel
| 3. How many flip-flops are requited to produce a divide-by-64 device?

* FIGURE 7-47

rLIP-FLOPS = 295

® Symbols for latches and flip-flops are shown in Figure 7-47.

—s v i—ds |—ve — s o — o ¢
— ex — Ex
-—& p—u F—dqr p—0 e L [o— (+
fa} Active-HIGH (b Active-LOW input dep Ciated S-K latch wdh Giared I3 latch
impust 5-R latch 5-R lasch
—} 5 v —n — ¢ — 4 e — s ¢
—=C —Fc —C —c
—ir p—u p— ! — K [— & Mp—0
—1s |}—e —{p e —s ¢ —{s =
—=C —d= —gq=c —qc
—r p—0 b—0 —x ¢ —k p—0
(e) S-R edge-triggered () Dedge-triggered () J-K edpe-iiggersd (b} J-K nuster-sk
fig-Nops lip-Nops lip-flops Nip-Nops
® Latches are histable devices whase state normally depends on asynchronous inpats.
® Edpe-niggered flip-flops are bistable devices with synchronous inputs whose state depends on the
inputs only at the ggering wansition of a clock pulse. Changes in the outputs occur at the tRgger-
ing transition of the clock,
& Pulse-triggered master-slave flip-flops are histable devicss with synchronous inputs whose state

depends on the inputs at the leading edge of the clock pulse, but whose output is postponed and does
not reflect the internal state until the trailing edge of the clock pulse. The synchronous inputs shoald
not be allowed to change while the clock is HIGH.

R

L If an 5-R laich has a 1 oo the 5 input and a 0 on the R input and then the § input goes to 0, the latch
will be
(a) set b reset fe) invalid (d) clear
2. The invalid state of an 5-R latch occurs when
@ S=LE=0 (S5=0HR=1I
e y=1Lk=1 i §=0.R=10
3, For s gated D Luch, the (2 output always equals the D input
{a) before the enable pulse b} during the enable pulse
{c) immediately after the enable pulse (d) answers (b) and (c)
4. Like the latch, the flip-flop belongs 1 a category of logic circuits known as
{a} monostable multivibrators (b} bistable multivibrators
{e) astable mulbtivibrators {d) one-shots
5. The purpose of the clock input 1o a flip-flop is to
) clear the device
() set the device
() always cause the ourput 1w change states
{d} cause the outpat b a state dependent on the o Mling (5-F. J-K, of D} inputs,

296 = DIGITAL FUNDAMENTALS

6. For un edge-triggered D flip-flop,
() achunge in the stare of the flip-flop can occur only at a clock pulse edge
(b} the state that the flip-flop goes 1o depends on the [} input
fch the cutput follows the input at each chock pulse
{d) all of these answers.
7. A feature that distinguishes the J-K flip-flop from the 5-R flip-fop is the

(@) toggle condition (b} preset input
ic} type of clock (d) clear input

8 A flip-flop is in the toggle coadition when
W J=1K=0 b i=1k=1
ey f=0,K=0 W S=0K=1

9. A J-K flip-flop with 7 =1 and K =1 has a 10 kHz clock input. The (? output is
(@) constantly HIGH () constantly LOW
{e} a 10 kHz square wave (d) a 5 kHz square wave

OBL 5 Angwer to odd-numbered problems are at the end of the book.

SECTION 7-1 Latches
L. If the waveforms in Figure 7—48 are applied to an active-LOW input 5-R latch, draw the resulting
output wavetorm in relation to the inputs. Assume that (starts LOW.
2. Solve Problem 1 for the input waveforms in Figure 7-49 applied to an active-HIGH S-R laich.
3. Salve Problem | for the input waveforms in Figure 7-50.

* FIGURE T-48

- [—— —d 5 — o

5 Uy

i 0 1rr i

R Lt L N L -

—a R o— ¢

~ FIGURE 7-49 R

& |
- FIGURE T-50 5 | T

i

aniniminininininini

4. For a gated S-R latch, determine the @ and Q outputs for the inputs in Figure 751, Show them in
proper relation 1o the enable input. Assume that @ staris LOW.

»* FIGURE 7-51 ——— e e

FLIP-FLOPS = 297

5. Solve Problem 4 for the inputs in Figure 7-52.
* FIGURE T-52 . 7 M o =3

» FIGURE 7-53

N

7. For u gaved D larch, the waveforms shown in Figure 7-54 are observed on s inputs. Draw the
timng diagram showing the output waveform you would expect 1o see ot (0 1f the lawch is initally
RESET.

= FIGURE 7-54

SECTION 7-7 Edge-Triggered Flip-Fops
8. Two edge-iriggered S-R flip-flops are shown in Figure 7-35, 1 the inputs are as shown, draw the
£ outpant of each flip-flop relative to the clock, and explain the difference between the two. The

flip-flops are initially RESET.
CLK | —1# ¢ —s —
3] R CLK —d= ¢ CLE —f~ ¢
r —ix b— U — & b— o
lah by

: FIGURE 7-5%

9. The { output of an edge-triggered S-R flip-flop is shown in relation to the clock signal in
Figure 7-56. Determine the input waveforms on the § and R inputs that are required to produce this
output if the flip-fiop 15 a positive edpe-triggered type.

= FIGURE T-5& 1 [M 1 M

CLK i
!
'

[— | —
el L]
10, Draw the @ output relative to the clock for a D lip-Mlop with the inputs as shown in Figure 7-57.
Assume positive edge-triggering and (2 initially LOW,

= FIGURE 7-57 T] . r 1 =
CLKE - [|

298 = DIGITAL FUNDAMENTALS

11. Solve roblem 10 for the inputs in Figure 7-58,

» FIGURE 7-58 oK TPJTM_H___J' ;__, -
P M B o B

12 For a positive edge-triggered J-K flip-flop with inputs as shown in Figure 7-59, determine the
2 output relative to the clock. Assume that @ starts LOW,

> FIGURE 7-59 ok _J _[—Lrl__l_ﬂ—ﬂ—

7

!
4
‘.
ed fodirTd
13. Solve Problem 12 for the inputs in Figure 7-60.

> FIGURE 7-60 ex JL_ I J oo rn

K

14. Determine the (waveform relative w the clock if the signals shown in Figure 7-61 are applied 1
the inputs of the J-K flip-flop. Assume that (is initially LOW.

> FIGURE 7-61 ax LM Mot FRE
&
m_"__']_! I 1 P
ST e
- L g
. i e

15. For a negative edge-triggered J-K flip-flop with the inputs in Figure 7-62, develop the Q output
waveform relative to the clock. Assume that {2 is initially LOW.

» FIGURE 7-82 ax {1 I [T T A S

S e NNy Ny
i linl L -

16. The following serial data are applied to the flip-flop through the AND gates as indicated in
Figure 7-63. Determine the resulting serial data that appear on the @ output. There is one clock
pulse for each bit time. Assume that {2 is initially 0 and that PRE and CLR are HIGH. Rightmost bits
are applied first.

Jpronoont
fr0111010
Jetlrioog
Kegooornio
Ka1101100
Eploioln?

= FIGURE 7-63

PRE)

El
J_.EI —/
45

FLIP-FLOPS

— ¢
LKk ————f=¢
L] _
b s
[
GR—— 7

m 29%

17, For the circuit in Figure 7-63, complete the timing diagram in Figure 7-64 by showing the & vuipuat

(which is initially LOW). Assume PRE and CLK remain HIGH.

18, Solve Problem 17 with the same J and K inputs but with the PRE and CLR inputs as shown in

Figure 7-63 in relation o the clock.

» FIGURE 7-64 ak J_l 1 —l — J;_l

b FIGURE 7-65 Ak ___'_; I S R I A

SECTION 7-3 Master-Slave Flip-Flops
1%. Determine the F output in Figure 7-66, Assame that {2 is initizlly LOW,
* FIGURE T-6&

ak [T |

S S B]
i [1 ___ |

k1

— 0

b—

302 w DIGITAL FUNDAMENTALS

SECTION 7-3 Master-Slave Fip-Flops

SECTION 7-4

SECTION 7-5

L. In the pulse-triggered flip-flop (master-slave), a data bit goes into the master section on the leading
edge of a clock pulse and is transferred to the output (slave) on the trailing edge. ln the edge-
wriggered flip-flop, a data bit goes intw the flip-flop and appeoars on the output on the same clock
edge.

2. (u) Nothing happens for the positive edge-triggered flip-flop.

(b} The output of a pulse-triggered master-slave flip-flop will change.

Rio-Fop O ting Characteristi
1. (&) Sct-up time is the time required for input data to be present before the tiggering edge of the
clock pulse.
{b) Hold time is the time required for data to remain on input after the triggering edge of the clock
pulse.
2. The T4AHCT4 can be operated at the highest frequency, according to Table 7-6.

Flip-Flop Applications
1. A group of data storage fip-Tops is a register,
2, For divide-by-2 operation, the flip-flop must toggle (F = 1 & = 1L
3. Six fMlip-flops are used in a divide-by-64 device.
SUPPLEMENTARY PROBLEMS FOR EXAMPLES
7-1 The 0 output is the sume as shown in Figure 7-5(b).

7-2 see Figure 7-73. 7-3 Sce Figure 7-74.
7-4 See Figure 7-75. 7-5 Sce Figure 7-76.
7-6 See Figure 7-77. 7-7 See Figure 7-T8.

sTL— T T 1T

. ~ »LJTLILT
ev 1| N _JILE]JI‘.—
]P0 S p— S e L |
4 FIGURE 7-73 A FIGURE 7-74

[S O Oy O . O -
;

s bl
5 'A:“—IE“' o L"" - ClK [i oo
¢ — | LI o s W o s
¢ Tl e
& FIGURE 7-T75 A FIGURE 7=-T&
ak [T L L
SRRy NSy M P B P e e N

TN T
N 1 '—‘—

A4 FIGURE 7-77 4 FIGURE 7-78

FLIP-FLOPS = 303

PN LOcLKy T e
. LUETIT R [FEE I
ax FLFLGLALBLA FLAL A e = Y
P I PNAED
FRE E : FIN 15 (LFRE) _E EJ
[IS p Wy B mysae L = -
4 FIGURE 7-79 A FIGURE 7-80
7-8 See Figure 7-79, 7-9 Sce Figure 7-80,
> FIGURE 7-81 ax PR Lin
41 H
Ko ’ ’
PE RN

7-10 See Figure -81.
7-11 2* = 32, Five flip-flops are required.

7-12 Sixteen states require four flip-flops (2° = 16).

SELF-TEST
L (@) Z () A 4. (b 5o 6. (d) 7. () B (b
9. (d)

COUNTERS

CHAPTER OBJECTIVES

s Describe the difference between an agmechronous and a
synchronous counter

= Analyze counter timing diagram:
B Anahze counter circuits

Explain how propagation delays affect the operation of a
counter

Determine the modulus of a counter
Modify the modulus of a counter

% Recognize the difference between a 4=bit binary counter and a
decade counter

Use an up/down counter to generate forward and reverse
Linary sequences

Determine the sequence of a counter

Use IC counters in various applications
Design a counter that will have any specified sequence of states
Use cascaded counters to achieve a higher medulus

Use logic gates to decode any given state of a counter

=

= Eliminate glitches in counter decoding
= Explain how a digital clock operates

As you learned in Chapter 7, flip-flops can be connected
together to perform counting operations. Such a group of
flip-fleps is a counter. The number of flip-flops used and the
wary in which they are connected determine the number of
states (called the modulus) and alio the specific sequence of
states that the counter goes through during each complete
cycle.

Counters are classified into two broad categories accord-
ngmtﬁewydwyare lecked: aymch and synchi
nou, In asy ty called ripple
eourters, the firt flip-flop is clocked by the external clock
pulse and then each successive flip-flop i clocked by the
output of the preceding flip-fiep. In synchronous counters,
the clock input is connected to all of the flip-flops so that
theyale clocked simultaneously, Within each of these two
c are classified p fly by the type of
sequenoe. the number of states, o' the numbet of flip-flops
in the counter.

COUNTERS = 305

| ASYNCHRONOUS COUNTER OPERATION

The term asynchronous refers to events that do not have a fixed time relationship with each
other and, generally, do not occur at the same time. An asynchronous counter is one in which
the flip-flops (FF) within the counter do not change states at exactly the same time because
they do not have a common clock pulse,

After completing this section, you should be able to

= Describe the operation of a 2-bit asy binary counter »* Describe the operation
of a 3-bit asynchronous binary counter ® Define ripple in relation to counters ® Describe
the operation of an asynchronous decade counter ® Develop counter timing diagrams

® Discuss the T4LS93A 4-hit asynchronous binary counter

“A 2-Bit Asynchronous Binary Counter

Figure 8-1 shows a 2-bit counter connected for asynchronous operation. Notice that the
clock (CLK) is applied to the clock input {C) of enly the first flop-flop, FF0, which is always
the least significant bit (LSB). The second flip-flop, FFI1, is triggered by the O, output of
FF0. FFO changes state at the positive-going edge of each clock pulse, but FF1 changes only
when triggered by a positive-going transition of the @ output of FF). Because of the inher-
ent propagation delay time through a flip-flop, a transition of the input clock pulse (CLK) and
a transition of the @ output of FF0 can never occur at exactly the same time. Therefore, the
two flip-flops are never simultaneously triggered, so the counter operation is asynchronous.
The asynchronous counters are also known as ripple counters.

* FIGURE 8-1 HIGH

FF FF1
A 2-bit arynchronous binary counter
dy — @ —1 4, — @
cx JUILLIL L c
2,
'KQ - KI
The Timing Diags Let us ine the basic operation of the 1 counter of

Figure 8—1 by applying four clock pulses to FFD and observing the O output of each flip-flop.
Figure 8-2 illustrates the changes in the state of the flip-flop outputs in response to the clock
pulses. Both flip-flops are connected for toggle operation (J = 1, K = 1) and are assumed to
be initially RESET (Q LOW),

eGuREs-z a [7 3L [
H
2, |
H
Ouiputs 4 O (LSB) i
| @ msB)

The positive-going edge of CLK1 (clock pulse 1) causes the O output of FFO to go HIGH,
as shown in Figure 8-2. At the same time the J; output goes LOW, but it has no effect on FFI
because a positive-going transition must occur to trigger the flip-flop. After the leading edge
of CLK1, @ = 1 and @y = 0. The positive-going edge of CLK2 causes @, to go LOW.
Output), goes HIGH and triggers FF1, causing & to go HIGH. After the leading edge of
CLK2, @y = 0 and @, = 1. The positive-going edge of CLK3 causes {, to go HIGH again.

306 m DIGITAL FUNDAMENTALS

Output §, goes LOW and has no effect on FFL. Thus, after the leading edge of CLK3, 0, = 1
and @, = 1. The positive-going edge of CLE4 causes @ to go LOW, while @, goes HIGH
and triggers FF1, causing 0, to go LOW. After the leading edge of CLK4, @, = 0 and
@, = 0. The counter has now recycled to its original state (both flip-flops are RESET).

In the timing diagram, the waveforms of the @, and @, outputs are shown relative to the
clock pulses as illustrated in Figure B-2. For simplicity, the transitions of 0. O, and the
clock pulses are shown as simultaneous even though this is an asynchronous counter. There is,
of course, some small delay between the CLK and the (transition and between the (J; tran-
sition and the {; transition.

Note in Figure 8-2 that the 2-bit counter exhibits four different states, as you would expect
with two flip-flops (2* = 4). Also, notice that if 0, represents the least significant bit (LSB)
and () represents the most significant bit (MSB), the sequence of counter states represents a
sequence of binary numbers as listed in Table 8—1. fn digital logic, Oy is always the LSB
unless otherwise specified.

» TABLE 8-1
By st sz o thi CLOCK PULSE |
counter in Figure 8-1 Initially 0 0
| 0 1
i | 0
3 | 1
ekt |

4 {recycles) 0

Since it goes through a binary sequence, the counter in Figure 8-1 is a binary counter. It
actually counts the number of clock pulses up to three, and on the fourth pulse it recycles 10
its original state ((}, = 0, @; = 0). The term recyele is commonly applied to counter opera-
tion; it refers to the transition of the counter from its final state back to its original state.

A 3-Bit Asynchronous Binary Counter

A 3-bit asynchronous binary counter is shown in Figure 8-3{a). The basic operation is the
same as that of the 2-bit counter just discussed, except that the 3-bit counter has eight states,
due 1o its three flip-flops. A timing diagram is shown in Figure §-3(b) for eight clock pulses.
Notice that the counter in Figure 8-3 progresses through a binary count of zero through seven
and then recycles to the zero state. This counter sequence is listed in Table 8-2. This counter
can be easily expanded for higher count, by connecting additional toggle flip-flops.

» TABLE 8-2 =
i
Initially 0 0 o |]

1 o 0 =

3 0 I a i

E 0 1 1 f

a 1 0 o i

5 1 0 Lol

6 1 I 0 J

7 1 1 1 ”

8 (rocycles) (] (1] 0 B

COUNTERS = 30%

Asynchronous Decade Counters

The modulos of a counter is the number of unigue states that the counter will sequence
through. The maximum possible number of states (maximum modulus) of a counter is 2",
where n is the number of flip-Mlops in the counter.

Counters can also be designed to have a number of states in their sequence that is less than
the maxi: of 2°, The resulti] is called a truncated sequence.

One common modulus for counters with truncated sequences is ten {called MODI0).
Counters with ten states in their sequence are called decade counters, A decade counter with
a count sequence of zero (D000} through nine (1001} is & BCD decade counter because its ten-
state sequence produces the BCD code. This type of counter is useful in display applications in
which BCD is required for conversion to a decimal readout.

To obtain a truncated sequence, it is necessary to force the counter to recyele before going
through all of its possible states. For example, the BCD decade counter must recycle back to
the OO state after the 1001 state. A decade counter requires four flip-flops (three flip-flops
are insufficient because 2° = B).

Let us use a 4-bit asynchronous counter such as the one in Figure 8-5(a) and modify its
sequence to illustrate the principle of truncated counters. One way 1o make the counter recycle
after the count of nine (1001) is to decode count ten (1010} with a NAND gate and connect the
output of the NAND gate to the clear (CLR) inputs of the flip-flops, as shown in Figure 8-6(a).

Partial Decoding Notice in Figure 8~6(x) that only 0, and @ are connected to the NAND
gate inputs. This is an ple of pariial decoding, in which the two unique
states () = 1 and @y = 1) are sufficient to decode the count of ten because none of the other
states (zero through nine) have both) and {0y HIGH at the same aime. When the counter goes

» FIGURE 8-& 10 decoder
CLE
HIGH —%
1] FFI FF1 FF3
@5 12 o 2

L 4y % I Iy

CLE = > C = £

K, K, X, K,

CLE CiLR CLR

(L]

310 = DIGITAL FUNDAMENTALS

HIGH

into count ten (1010}, the decoding gate output goes LOW and asynchronously resets all the
flip-flops.

The resulting timing diagram is shown in Figure 8-6(b). Notice that there is a glitch on the
2 wavetorm. The reason for this glitch is that @ must first go HIGH before the count of ten
can be decoded. Not until several nanoseconds after the counter goes to the count of ten does
the output of the decoding gate go LOW (both inputs are HIGH), Thus, the counter is in the
1010 state for a short time before it is reset 1o 0000, thus producing the glitch on @, and the
resulting glitch on the CLR line that resets the counter,

Other truncated sequences can be implemented in a similur way, as Example 8-2 shows.

Show how an asynchronous counter can be implemented having a modulus of twelve with
a straight binary sequence from 0000 through 1011,

Since three flip-flops cen produce a maximum of eight stites, four flip-flops are required to
produce any modulus greater than eight but less than or equal 1o sixtieen.

‘When the counter gets to its last state, 1011, it must recyele back to 0000 rather than
going to its normal next state of 110, as illustrated in the following sequence chart:

e & 0 O
O iR —

Recveles

1 0 T e ——
1 I 0 0 ¢

Observe that (), and ¢, both go to 0 anyway, but Oy and ¢ must be forced to 0 on the
twelfth clock pulse. Figure 8-7(a) shows the modulus-12 counter. The NAND gate par-
tially decodes count twelve (1100} and resets flip-flop 2 and flip-flop 3. Thus, on the
twelfth clock pulse, the counter is forced to recycle from count eleven 1o count zero, as
shown in the timing diagram of Figure 8-7(b). (It is in count twelve for only u few
nanoseconds before it is reset by the glitch on CLR.)

Normal next state

FF1

CLK =—q

LR

LR

ax || 2 3 4 5 6 7 8 9

Ql
<

Q.

output
{CLR)
ik}

FIGURE B-T

n

COUNTERS

Glich |

.

Giliech

Supplementary Problem - How can bt counter in Figure 8-7(a) be modified to'make ita modulus-13 couriter?

= 3N

A 4-BIT ASYNCHRONOUS BINARY COUNTER

The 74LS93A is an example of a specific integrated circuit asynchronous counter, As the
logic diagram in Figure 8- shows, this device actually consists of a single flip-flop and a
3-bit asynchronous counter. This arrangement is for flexibility. It can be used as a divide-
by-2 device if only the single flip-flop is used, or it can be used as a modulus-8 counter if
only the 3-bit counter portion is used. This device also provides gated reset inputs, RO(1)
and RO(2), When both of these inputs are HIGH, the counter is reset to the (00 state
CLR.

» FIGURE 8-8 in
CLK B
4 4 [5 [| %
(14)
CLK a—-ar- [= [c
Kﬂ lKl KZ‘ K‘
& CLR CLR CLR CLR
) w
RN 1
o[k - l =
RG22y IR
112 o (8}
0y &
{151y

i

@,
IMSE)

312 = DIGITAL FUNDAMENTALS

Additionally, the 74LS93A can be used as a 4-bit modulus-16 counter (counts 0 through
15) by connecting the @ output to the CLK B input as shown in Figure 8-9(a). It can also be
configured as a decade counter (counts 0 through 9) with asynchronous recycling by using the
gated reset inputs for partial decoding of count ten, as shown in Figure 8-9(b).

* FIGURE 8-9

CLK A ——g> ¢ CTRDIV 16 CLE A ——> ¢ CTRDIVID
CLE B c CLK B =
RO ——] ROYT)
RO ——1 ROi2)
o 0 0 Q @ 0 ¢ Q
ia) TALS93A connected as a modulus - 16 counter {b) TALS9IA connected ns o decade counter

| EXAMPLE B-3
Show how the TALS93A can be used as a modulus-12 counter.

Solution Use the gated reset inputs, RO(1) and RO{2), to partially decode count 12 (remember, there
is an internal NAND gate associated with these inputs). The count-12 decoding is accom-
plished by connecting (0 1o ROY 1) and @ 10 ROY2), as shown in Figure 8-10. Output gy is
connected to CLK B to create a 4-bit counter.

» FIGURE 8-10

CTRDIV 12

Immediately after the counter goes to count 12 (11000, it is reset 1o 0000, The recyeling,
however, results in a glitch on (1, because the counter must go into the 1100 state for
several nanoseconds before recycling.

Supplementary Problem Show how the 7T4LS93A can be connected as a modulus-13 counter,

I:ﬂ;&u 1. What does the term asynchronous mean in relation to counters?

Answers are at theend of 2. How many states does a modulus-14 counter have? What is the minimum number of
the chapter. flip-flops required?

COUNTERS

' SYNCHRONOUS COUNTER OPERATION

= 313

The term synclonous refers lomms t.hm have a fixed time relationship with each other,
With respect o 1 means that all the flip-flops in the counter
are clocked at the same time by a common clock pulse.

After completing this section. you should be able to

= Describe the operation of a 2-bit b binary counter ™ Descnbe the operation
of a 3-bit synchronous binary counter ® Describe the operation of a 4-bit |

binary counter ® Describe the operation of a synchronous decade counter ® Develop
counter timing diagrams ® Discuss the 74HC163 4-bit binary counter and the T4LS160
BCD decade counter

A 2-Bit Synchronous Binary Counter

Figure 8-11 shows & 2-bit synchronous binary counter. Notice that an arrangement different
from that for the asynchronous counter must be used for the J; and K, inputs of FF1 in order
1o achieve a binary sequence.

= FIGURE 8-11 HIGH
FF0 FF1
&,
' I — o,
> C C
K e 1 b— 0,
CLK

‘The operation of this synchronous counter is as follows: First, assume that the counter is
initially in the binary 0 state; that is, both flip-flops are RESET. When the positive edge of the
first clock pulse is applied, FFO will toggle and Oy will therefore go HIGH. What happens 1o
FF1 at the positive-going edge of CLK1? To find out, let us look at the input conditions of FFI.
Inputs J; and K, are both LOW because (g, to which they are connected, has not yet gone

HIGH. R ber, there is a propagation delay from the triggering edge of the clock pulse until
the @ output acwally makes a transition. So, J = 0 and K = 0 when the leading edge of the
first clock pulse is applied. This is a h fition, and th FF1 does not change

state. A timing detail of this portion of the cuumer operation is shown in Figure §-12(a).
CLKI _‘—‘—‘_ oK —I—L-——-———
Qo) —o| [Fropmpmim i ot 0 ol o e Puopusation dlay tough /0

B

Ly

0
fah by

aws [L ews [L
! —

Qn; —el [+— Propagation delay through FFy Qa:] — P Propsgation delay through FFO

@& . Ql:' - b Propagation delay through FFI

i) iy

[
o

4 FIGURE 8-12

314 = DIGITAL FUNDAMENTALS

= FIGURE 8-14

After CLKI, @ = 1 and @, = O (which is the binary | state). When the leading edge of
CLK2 occurs, FFO will toggle and @, will go LOW. Since FF1 has a HIGH (@, = Donits J
and K, inputs at the triggering edge of this clock pulse, the flip-flop toggles and @) goes
HIGH. Thus, after CLK2, 0, = O and @, = 1 (which is a binary 2 state). The timing detail for
this condition is shown in Figure 8-12(b).

‘When the leading edge of CLK3 occurs, FF) again toggles o the SET state (@ = 1), and
FFI remains SET (@, = 1) because its J, and K, inputs are both LOW ((Q, = 0). After this
triggering edge, O, = 1 and @, = 1 (which is a binary 3 state). The timing detail is shown in
Figure 8-12(c).

Finally, at the leading edge of CLK4, @, and @, go LOW because they both have a toggle
condition on their J and K mputs, The timing detail is shown in Figure 8-12(d). The counter
has now recycled 1o its original state, binary 0.

The complete timing diagram for the counter in Figure 8-11 is shown in Figure 8-13,
Notice that all the fi itions appear coincident; that is, the propagation delays are
not indicated. Although the delays are an important factor in the synchronous counter opera-
tion, in an overall timing dingram they are normally omitted for simplicity. Major waveform
relationships resulting from the normal operation of 4 circuit can be conveyed completely
without showing small delay and timing differences. However, in high-speed digital circuits,
these small delays are an important consideration in design and troubleshooting,

» FIGURE 8-13 ax [2] B ol
o
:
@ _i_ I
A 3-Bit Synchronous Binary Counter

A 3-bit synchronous binary counter is shown in Figure 8-14, and its timing diagram is shown
in Figure 8-15. You can und, 1 this counter operation by ining its sequence of states
as shown in Table 8-3.

HIGH

= FIGURE 8-15

= TABLE 8-3

:
Initially 0 0 0 b

1 0 0 1§

2 0 1 0o 0§

3 o 1 T

4 1 0 [

5 1 0 1§

6 1 1 o

7 1 1 T

8 (recycles) 0 i o U

-2 o et o el R LA R D £ et ||

First, let us look at @y Notice that @y changes on each clock pulse as the counter pro-
gresses from its original state to its final state and then back to its original state. To produce
this operation, FFO must be held in the wggle mode by constant HIGHs on its Jy and K,
inputs. Notice that (0, goes to the opposite state following each time (J, is a 1. This change
occurs at CLK2, CLK4, CLK®6, and CLKS. The CLKS pulse causes the counter to recycle. To
produce this operation, @, is connected to the J; and K, inputs of FF1. When @y is a | and a
clock pulse occurs, FFI is in the toggle mode and therefore changes state. The other times,
when Qg is a 0, FF1 is in the no-change mode and remains in its present state.

Mext, let us see how FF2 is made to change at the proper times according to the binary
sequence. Notice that both times {; changes state, it is preceded by the unique condition in
which both @, and @, are HIGH. This condition is detected by the AND gate and applied to
the J; and K inputs of FF2. Whenever both O, and @, are HIGH, the output of the AND gate
makes the J; and K; inputs of FF2 HIGH, and FF2 toggles on the foliowing clock pulse. At all
other times, the J; and K; inputs of FF2 are held LOW by the AND gate outpu, and FF2 does
not change state,

A 4-Bit Synchronous Binary Counter

Figure S-Iﬁta) shows a 4-bit synchmmu}. binary counter, and Figure l!-lb{b) shows its
timing d This particular counter is impl d with negative edge-tri d flip-
flops. The reasoning behind the J and K i input control for the first three Mip-Mlops is the same
as previously discussed for the 3-bit counter, The fourth stage, FF3, changes only twice in the
sequence. Notice that both of these transitions occur following the times that Q. @), and @,
are all HIGH. This condition is decoded by AND gate Gy so that when a clock pulse oceurs,
FF3 will change state. For all other times the J, and K, inputs of FF3 are LOW, and it is in a
no-change condition,

HIGH

CLK
ia)

COUNTERS = 315

You can understand the counter operation by examining the sequence of states in Table 8-4
and by following the implementation in Figure 8-17. First, notice that FFO (Q) toggles on
each clock pulse, so the logic equation for its J, and K, inputs is

Jy=Ky=1

This equation is impl d by ing Jy and K, to a constant HIGH level.
Next, notice in T.lhlc 84 that FF1 (,) changes on the next clock pulse each time @y = |
and (3 = 0, so the logic equation for the J, and K| inputs is

hi=kK= QDEJ

‘This equation is implemented by ANDing @, and Qs and connecting the gate output to the
Jy and K, inputs of FF1.

= TABLE B-4
CLOCK PULSE

Initially QT Sien DS O
1 000
2 o 0 1 0
3 o o 1 1
4 o 1 0 0
L (1] i (1] 1
6 o 1 1 0
T o 1 1 1

8 1 o 0 0
9 10 0
10 (recyeles)] (1] 0 [

R e N T, e R

Flip-flop 2 (Q,) changes on the next clock pulse each time both @ = 1 and @, = 1. This
requires an input logic equation as follows:

2= Ky = Qo)

This equation is implemented by ANDing (, and @, and connecting the gate output to the
J; and K; inputs of FF2.

Finally, FF3 ((3) changes to the opposite state on the next clock pulse each time 0 = 1,
@, = 1,and @; = | (state 7), or when @, = 1 and @, = 1 (state 9). The equation for this is as
follows:

d3 = Ky = QolhQs + Qs
This function is implemented with the ANDVOR logic connected to the Jy and K, inputs of
FF3 as shown in the logic diagram in Figure 8-17. Notice that the differences between this
decade counter and the modulus- 16 binary counter in Figure 8-16 are the 0,05 AND gate, the
(o2 AND gate, and the OR gate: this detects the of the 1001 state

and causes the counter to recycle properly on the next clock pulse.

COUNTERS = 317

318 = DIGITAL FUNDAMENTALS

COUNTERS
A 4-Bit Synct Binary C
The T4HC163 is an ple of an i d cireuit 4-bit synch binary counter. A logic

symbol is shown in Figure 8-19 with pin numbers in parentheses. This counter has several
features in addition 10 the basic functions previously discussed for the general synchronous
binary counter.

First, the counter can be synchronously preset to any 4-bit binary number by applying the
proper levels to the parallel data inputs. When a LOW is applied to the LOAD input, the
counter will assume the state of the data inputs on the next clock pulse. Thus, the counter
sequence can be started with any 4-bit binary number.

Also, there is an active-LOW clear input {CLR), which synchronously resets all four flip-
flops in the counter. There are two enable inputs, ENP and ENT. These inputs must both be
HIGH for the counter 1o sequence through its binary states. When at least one input is LOW,
the counter is disabled. The ripple clock output (RCO) goes HIGH when the counter reaches a
terminal count of fificen (TC = 15). This output, in conjunction with the enable inputs,
allows these counters to be cascaded for higher count sequences, as will be discussed later.

» FIGURE 8-19 Data inputs
——
Dl'l DI D} D.'i
3) {id) |45) |i6)
— (1)
CLR 9 CTR DIV 16
LOAD ——
am (15}
ENT 1 TC=15 RCO
ENP)
CLK =
’ma u:»‘(m'(m
HU ol o} e!
Sl B M s}

Data outputs

Figure 8-20 shows a timing diagram of this counter being preset to twelve (1100) and then
counting up to its terminal count, fifteen (1111). Input I, is the least significant input bit, and
3y is the least significant output bit.

Let us examine this timing diagram in detail. This will aid ynu in interpreting timing
diagrams found later in this chapter or on manufacturers’ data sheets, To begin, the LOW level
pulse on the CLR i input causes all the outputs (Qy, ¢y, (5, and @) to go LOW.

Next, the LOW level pulse on the LOAD input synchronously enters the data on the data
inputs (D, £y, 13, and Dy) into the counter. These data appear on the (2 outputs at the time of
the first positive-going clock edge after LOAD goes LOW. This is the preset operation. In this
particular example, 0, is LOW, @, is LOW, @, is HIGH, ard (2, is HIGH. This, of course, is a
binary 12 (0, is the LSB).

The counter now advances through states 13, 14, and 15 on the next three positive-going
clock edges. It then recycles to 0, 1, 2 on the following clock pulses. Notice that both ENP
and ENT inputs are HIGH during the state sequence. When ENP goes LOW, the counter is
inhibited and remains in the binary 2 state.

COUNTERS = 3119

» FIGURE 8-20 &]

R e
Data

inputs | p,

12 413 14 15 0 i

[

-

A Synchronous BCD Decade Counter

The 74L5160 is an example of a decade counter, which has the same inputs and outputs as the
74HC163 binary counter previously discussed. It can be preset to any BCD count by the use
of the data inputs and a LOW on the LOAD input. A LOW on the asynchronous CLR will
reset the counter. The enable inputs ENP and ENT must both be HIGH for the counter to
advance through ils seq of states in resy 10 a positive ition on the CLK inpat.
As in the T4HC163, the enable inputs in conjunction with the ripple clock output RCQ (termi-
nal count of 1001) provide for cascading several decade counters. Figure 8-21 shows the logic
symbol for the 74L5160 counter, and Figure 8-22 is a timing diagram showing the counter
being preset to count 7 (0111). Cascaded counters will be discused in Section 8-5.

» FIGURE 8-21 n, by DDy
|t3] 40 {151 ({60

— i

CLRE Ty CTR DIV 10

LOAD ?d %

ENP) TC=9 [—— RO

ENT

ik -2 Lo

|ﬂ4)‘ll]):!]2l|(il)

0, 0, O 0,

ol —————wt e [nhihit —=—e

320 ® DIGITAL FUNDAMENTALS

» FIGURE 8-22 (7 A [|
@6 el
, - |_._ - :
Data Du_J l_ = B L
mpts | gy | ety e oty vt o i
LDy .
ax LUy Lrururur
ENP I R ::—J_
S I I H —
= T B e =
l 2~ gL [
Chutputs —] il
ai 1 I:
e g B B
7 2 0 b o gy
T Count ,: Iohibit ——s
Clear Preset

| :.EE?;:;&N L 1. How does a synchronous counter differ from an asynchronous counter?

2. Explain the function of the preset feature of counters such as the 74L5160 and the
74HC163,

3. Describe the purpose of the ENP and ENT inputs and the RCO output for the two
specific counters introduced in this section.

[8537 uP/DOWN SYNCHRONOUS COUNTERS

An up/down counter is one that is capable of progressing in either direction l.hmugh a certain
sequence, An up/down counter, sometimes called a bidirectional counter, can have any speci-
fied sequence of states, A 3-bit binary counter that advances upward through its sequence
(0.1.2,3,4,5, 6, 7) and then can be reversed so that it goes |hmughmem;uen:: :uu:c
opposite direction (7, 6, 5,4, 3,2, 1,) is an ill ion of uf

After completing this section, you should be able to

= Explain the basic operation of an up/down counter ® Discuss the TAHC190 up/down
decade counter

322 = DIGITAL FUNDAMENTALS

. -|EXAMPI.E 3-4
Show the timing diagram and d ine the seq of a 4-bit synchronous binary

up/down counter if the clock and UP/DOWN control inputs have waveforms as shown in
Figure 8-24(a). The counter stans in the all Os state and is positive edge-triggered.

LI DEWN —_— -

CLK |_

{a)

i
Qo‘_ll"1 il I LE.TL'”

EL

1 i i 1 P
) i i i]
0 _:er—rl_l M u:rl T"u:u
(L8 g ' =
[} 1 1 1 1 1 i 1 1)
I I T e 1 Vo
I 1 i
g, ::lnluru[r:u-um oft{oieininin
T T R H H i
1] 1}] 1 [} 1] 1 i I
1 1 1} 1 1 1 1 1 1]
P Q ptptotoioininiotofi|oisinioio

A FIGURE 8-24

Solution The timing diagram showing the @ outputs is shown in Figure 8-24(b). From these wave-
forms, the counter sequence is as shown in Table 8-6.

> TABLE 8-

[0, 0, 0. 0. |
(1] o L] 0
0 0 0 1
L] 0 1 i e
0 (] 1 1
0 1 0 0
0 (] 1 1
0 0 1 0
0 0 o 1 DOWN
a] 0 o
I 1 1
0 0 0 0 t
0 0 0 1 up
(1] 0 1 o [
0 0 0 1 'DO\\’N
1] 0 0 o

Supplementary Problem Show the timing diagram if the UP/DOWN control waveform in Figure 8-24(a) is inverted.

COUNTERS = 323

AN UP/DOWN DECADE COUNTER

Figure 8-25 shows a logic diagram for the 7T4HC190, an example of an integrated circuit
up/down synchronous counter. The direction of the count is determined by the level of the
up/down input (D/L7). When this input is HIGH, the counter counts down; when it is
LOW, the counter counts up. Also, this device can be preset to any desired BCD digit as
determined by the states of the data inputs when the LOAD input is LOW.

» FIGURE 8-25 b, B, B,
b

CTR DIV 10

9

‘lllfll]l

ILET RPN

Ok —= ¢ D——— FCi

I{n :::1[61

i

o, o, ¢, o,

The MAX/MIN output produces a HIGH pulse when the terminal count nine (1001) is
reached in the UP mode or when the terminal count zero (0000) is reached in the DOWN
mode. This MAX/MIN output, along with the ripple clock output (RCO) and the count
enable input (CTEN), is used when cascading counters. (Cascaded counters are discussed
in Section 8-5.)

Figure 8-26 is an examnple timing diagram that shows the 74HC190 counter preset to
seven (0111) and then going through a count-up sequence followed by a count-down
sequence, The MAX/MIN output is HIGH when the counter is in either the all-Os state
{MIN) or the 1001 state (MAX).

* FIGURE 8-2& Loap 1 T
-
o 5T
2
DI [Ir‘
Draza 5l
npuls i, _'}
[}
D\ — :..
[}
e alipipinpiplpiyNnNpip el
] T
F T T S S T S I HEHE
R I S T
CTEN " [e
— 11 r——t—
it — | I
ST Voo 1 1 | [—
B e S L -
e | g, ST L e
N T] L - |
¥ | i i
MAxiN Tl 11 1 -
— -] L I 1 1 1 I 1 [} :
RCO e P |
7:>¢:=|::::|_:: 2 :::I:n:u:x 7
v] ' I v [
) 1] 1]
1ia—— Countup ——=i= labibit =1 le—— Court down ———=}

324 w DIGITAL FUNDAMENTALS

| ;iﬂé&" o 1. A 4-bit up/down Binary counter is in the DOWN mede and in the 1010 state, On the

> FIGURE 8-27 .

General clocked sequential
cireuit

next clock pulie, to what state does the counter gof

2. What is the terminal count of a 4-bit binary counter in the UP made? In the DOWN
made? What is the next state after the terminal count in the DOWN mode?

:EDESIGN OF SYNCHRONOUS COUNTERS

This section is recommended for those who want an introduction to counter design or to
state machine design in general. Tt is not a prerequisite for any other material.

After completing this section, you should be able to

= Describe a general sequential circuit in terms of its basic parts and its input and outputs

= Develop a state diagram for a given sequence ® Develop a next-state table for a speei-
fied counter sequence ® Create a flip-flop transition table ® Use the Kamaugh map
method to derive the logic requirements for a synchronous counter . 8 Implement a counter
to produce a specified sequence of states

General Model of a Sequential Circuit
Before proceeding with a specific counter design technique, let us begin with a general
definition of a sequential circuit or state machine: A general sequential circuit consists of
a combinational Jogic section and a memory section (flip-flops), as shown in Figure B-27.
In a clocked sequential circuit, there is a clock input to the memory section as indicated,

CLK
Excltation lines '
fy—— - —,
Tnputs J:' _E_. ‘°""‘::;S"“I : Memory —E-T Ousputs
- . 0,
T

St variable Hoes

The information stored in the memory section, as well as the inputs to the combinational

logic (fo. £y -+« s 1), is required for proper operation of the circuit. At any given
time, the memory is in a state called the present state and will advance to a newr stare
on a clock pulse as d ined by ditions on the lines (Yo ¥io o . .0 Yol

The present state of the memory is ref
These state variables, along with the inputs (f, [y, . . .

d by the state les (Qon Q10e - o o Q20
+ 1), determine the system outputs

(G5 Oy, 0,
Not all sequential circuits have input and output variables as in the general model just dis-
cussed. Hi all have excitati iables and state variables. Counters are a special case

of clocked sequential circuits. In this section, a general design procedure for sequential
circuits is applied to synchronors counters in a series of steps.
Step 1: State Diagram

A counter is first d by a state diag which shows the progression of states
through which the counter advances when it is clocked. As an example, Figure 8-28 is a state

diagram for a basic 3-bit Gray code counter. This particular circuit has no inputs other than
the clock and no outputs other than the outputs taken off each Mip-flop in the counter. You
may wish to review the coverage of the Gray code in Chapter 2 at this time,

> FIGURE 8-18

“Step 2: Next-state Table

Once the sequential circuit is defined by a state diagram, the second step is to derive a next-
state table, which lists each state of the counter (present state) along with the corresponding
next state, The next state is the siate that the counter goes to from its present state upon
application of a clock puise. The next-state table is derived from the state diagram and is
shown in Table 8-7 for the 3-bit Gray code counter. (, is the least significant bit,

» TABLE 8-7

PRESENT STATE NEXT STATE
Q, Q,

Step 3: Flip-flop Transition Table

Table 8-8 is a transition table for the J-K flip-flop. All possible output transitions are listed by
showing the Q output of the flip-flop going from present states to next states. (y is the present
state of the flip-flop (before a clock pulse) and Q. is the next state (after a clock pulse). For
cach output transition, the J and K inputs that will cause the transition to occur are listed. The
Xs indicate a “don’t care” (the input can be either a 1 or a 0).

> TABLE 8-8

OUTPUT TRANSITIONS | FLIP-FLOP INPUTS
Qust J

Ot prescnt stise:

O - 1} BESE a0
X

COUNTERS = 325

326 w DIGITAL FUNDAMENTALS

The values of J, and K,
1o prodace the transition
placed on each map in the

present-state cell.

to produce the

present-state cell.

Output

Transitions

I hniet

0"l
[|
| e O}
| —

The values nl!,md#.
transition are
| placed on each map in the

To design the counter, the transition table is applied to each of the flip-flops in the counter,
based on the next-state table (Table 8-7). For example, for the present state 000, 0, goes from
a present state of 0 to a next state of 1. To make this happen, J, must be a 1 and you don’t care
what Ky is (J; = 1, Ky = X), as you can see in the transition table (Table 8-8). Next, @, is 0 in
the present state and remains a 0 in the next state, For this transition, J; = 0 and K, = X,
Finally, (; is 0 in the present state and remains a O in the next state. Therefore, /3 = 0 and Ky
= X. This analysis is repeated for each present state in Table 8-7.

Step 4: Kamaugh Maps

Karnaugh maps can be used to determine the logic required for the J and X inputs of each
flip-flop in the counter. There is a Kamnaugh map for the J input and a Kamaugh map for the
K input of each flip-flop. In this design procedure, each cell in a Karnaugh map represents one
of the present states in the counter sequence listed in Table 8-7.

From the J and K states in the transition table (Table 8-8) a 1, 0, or X is entered into each
present state cell on the maps depending on the transition of the @ output for a particular flip-
flop. To illustrate this procedure, two sample entries are shown for the J; and the K inputs to
the least significant flip-flop (Qy) in Figure 8-29.

Kymap

L 1

2ieh
requied 00
afe

o

1

0

required

Present State Next State P“] Ih:l .mmaﬂ
Q Q, Q AR B | o the next state.

L |

Flip-flop transition table

0 o] 0 0 1
DX DA T
1 X 0 1 1 0 1 o For the present state 101, {0y
— 04 Ri5 0, I 1 0 | makesatransition from i to 0
X " 1 1 o 1} 1 1 to the neat state.

1 1 1 1 0 1

1 0 1 1 0 o .-—I

1 L] o o o L]

Next-state table

A FIGURE 8-29

The completed Karnaugh maps fm' all three flip-flops in the counter are shwn in
Figure 8-30. The cells are g d as indicated and the ling Boolean
for each group are derived.

P

» FIGURE §-310
.,

=

o=

Step 5: Logic Expressions for Flip-flop Inputs
From the Kamaugh maps of Figure 8-30 you obtain the following expressions for the J and K

inputs of each flip-flop:
Jo= @ + 0 = G:E G
Ko= 0.0+ 00 = 0: ® G
Ji= 0o
K= 0200
Ji= 0104
Ky = 0o

Step 6: Counter Implementation

The final step is to implement the combinational logic from the expressions for the J and K
inputs and connect the flip-flops to form the complete 3-bit Gray code counter as shown in

Figure 8-31.

0.2 &y
w| o m,{
o | x L)_(J__
nx|xp
wlo ol
Jmap

2,2, &g
wlxyxE
ojofof
o m
i x L@E
R e

2.0y

COUNTERS

Nan)|

oo

u (1]

wlo x|

Qno L
!
I

X
X

S

= 327

LHL)

* FIGURE 8-31

B

FFO
¢
Io
=4
Uy
K |

328 = DIGITAL FUNDAMENTALS

A summary of steps used in the design of this counter follows. In general, these steps can
be applied to any sequential circuit.

. Specify the counter sequence and draw a state diagram.

2. Derive a next-state table from the state diagram.

3, Develop a wransition table showing the flip-flop inputs required for each transition. The
transition table is always the same for a given type of flip-flop.

4. Transfer the J and K states from the transition table to Kamaugh maps. There is a
Karmnaugh map for each input of each flip-flop.

5. Group the Kamaugh map cells to gencrate and derive the logic expression for each
flip-Mop input,

6. lmpl the ions with binational logic, and bine with the flip-flops

to create the counter.

This procedure is now applied to the design of other sy in Examples 8-5
and 8—6.

"'Iawupl.a 8-5 '
Design a counter with the irregular binary count sequence shown in the state diagram of
Figure 8-32. Use J-K flip-flops.

Solution Swpl.ﬂnﬂmdmgmmumh}wnﬁl&mghﬂu:mwhfuwmamm
is pl this seq because the maximum binary count is
sc\':n Smoc the required sequence does not include all the possible binary states,
the invalid states (0, 3, 4, and 6) can be treated as “don’t cares” in the design.
However, if the counter should erroneously get into an invalid state, you must
make sure that it goes back to a valid state.

Step 2. The next-state table is developed from the state diagram and is given in Table 8-9.

» FIGURE 8-32

= TABLE 8-9 -
PRESENT STATE i MNEXT STATE |
@ @ Q| Q2 0 G, N
0 0 1 0 k 0. N
(1] 1] 1 (V] 1
1 0 1 1 1 1
1 1 1 0 0 1

Step 3. The transition table for the J-K flip-flop is repeated in Table 8-10.

» FIGURE 8-33

» FIGURE 8-34

¥ TABLE 8-10
Transition table for 3 J-K flip-flop gUTPUI IP.ANSII;ONS
N N+t
o e o
o —_ 1
1 — o
1 —_— 1

| FUP-FLOP INPUTS

COUNTERS = 329

K

[— BRI

53 " |

Step 4. The J and K inputs are plotted on the present-state Karnaugh maps in
Figure 8-33. Also “don’t cares™ can be placed in the cells corresponding o
the invalid states of 000, 011, 100, and 110, as indicated by the red Xs.

o
00N 0

1

ol x| 0

ol

I
o
B
.

Step 5. Group the 1, taking advantage of as many of the “don’t care™ states as possible
for maximum simplification, as shown in Figure 8-33. Notice that when all cells
in a map are grouped, the expression is simply equal to 1. The expression for

O
00N 0

each J and K input taken from the maps is as follows:

Step 6. The implementation of the counter is shown in Figure §-34,

HIGH

hy=1,Ky= 02
h=K=1
h=K=0

U
" HIGH

330 = DIGITAL FUNDAMENTALS

An analysis shows that if the counter, by accident, gets into one of the invalid states
(0, 3, 4, 6), it will always retumn to a valid state ding to the foll
0=3=4=7 and6— 1.

g seq

Supplementary Problem Verify the analysis that proves the counter will always return (eventually) to a valid state
from an invalid state.

| EXAMPLE 8-6
Develop a synchronous 3-bit up/down counter with a Gray code sequence. The counter

should count up when an UP/DOWN control input is | and count down when the control
input is 0.

Solution Step 1. The state diagram is shown in Figure 8-35. The | or 0 beside each arrow indicates
the state of the UP/DOWN control input, ¥.

* FIGURE 8-35

State diagram for a 3-bit up/down
Gray code counter

Step 2. The next-state table is derived from the state diagram and is shown in Table 8-11.
Notice that for each present state there are two possible next states, depending on the

UP/DOWN control variable, ¥.

= TABLE 8-11

Next-state table for 3-bit up/down | . ‘_Doww’;‘“‘ Sl A
Gray code counter | e e e e
) 0 0 1 0 0 0 0 1
0 0 1 o 0 0 0 I 1
0 | 1 0 0 I 0 1 0
0 | 0 0 1 o) 1 0
1 I 0 0 I 0 : | 1 1
1 | 1 1 I g 0 1
1 0 1 1 I 1= 0 0
1 i 0 I i | | i 0 0

¥ = UPDOWN contrel gt

COUNTERS = 331

Step 3. The transition table for the J-K flip-flops is repeated in Table 8-12.
* TABLE 8-12

OUTPUT TRANSITIONS FLIP-FLOP INPUTS [N
Qu Qisa Jil K i
00— 0 0 X |

0 — 1 1 X
1 — 0 X 1 B
I — 1 X o a
=1

L aps for the J and K inputs of the Mlip-flops are shown in Figure 8-36,
The UP/DOWN control input, ¥, is considered one of the state vanables along with
Qo @y and @,. Using the next-state table, the information in the “Flip-Flop Inputs™
column of Table 8-12 is transferred onto the maps as indicated for each present state
of the counter.

Q0 N M 01 11 10 0,0, W

A FIGURE 2-34&

Step 5. The 1s are combined in the largest possible groupings, with “don’t cares™ (Xs)
used where possible. The groups are factored, und the expressions for the S and K
inputs are as follows:

= QO+ GO + 0.0 + 007 Ky = 0u0)Y + 00, F + Q0 + G0 Y
Ji = GQo¥ + 0:0.¥ Ki = Q0¥ + 00,¥
J = 000 + QY Ky = iQF + Q0¥

Step 6. The J and K eq i
counter is shown in

are implemented with ¢
gure §-37.

[Iogic, and the complete

332 = DIGITAL FUNDAMENTALS

FIGURE 8-37

Supplementary Problem

| sECcTION B-4
| REVIEW

[

>

Uy

o

CLK

Verify that the logic in Figure 8-37 agrees with the expressions in Step 5.

In this section, you have seen how sequential circuit design techniques can be applied
specifically to counter design. In general, sequential circuits can be classified into two types:
(1) those in which the output or outputs depend only on the present internal state (called
Maoare circuirs) and (2) those in which the output or outputs depend on both the present state
and the input or inputs (called Mealy circuits).

1. A flip-flop is presently in the RESET state and must go to the SET state on the next clock
pulse. What must f and K bel

2. A flip-flop is presently in the SET state and must remain SET on the nest clock pubie.
What must J and K be?

338 = DIGITAL FUNDAMENTALS

Supplementary Problem

A FIGURE B-46

Show the logic for decoding state 5 in the 3-bit counter.

- Decoding Glitches
The probl of glitches produced by the decoding process was introduced in Chapter 6. As

you have learned, the propagation delays due to the ripple effect in asynchronous counters
create transitional states in which the counter outputs are changing at slightly different times.
These transitional states produce undesired voltage spikes of short duration (glitches) on the
outputs of a decoder connected to the counter. The glitch problem can also occur to some
degree with Ibecause the propagation delays from clock to @ outputs of
cach flip-flop in a counter can vary slightly.

Figure 8—47 shows a basic asynchronous BCD decade counter connected to a BCD-to-
decimal decoder. To see what happens in this case, let us look at a timing diagram in which
the propagation delays are taken into account, as shown in Figure 848, Notice that these
delays cause false states of short duration. The value of the false binary state at each critical

is indi d on the diag The Iting glitches can be seen on the decoder
outputs.
= FIGURE 8-47 CTRDIV 10 BCDVDEC
0np—
1 p—
&y 2 p—
Q, 3 3p—
2 4p—
[N P 5 b—
@, 4 6 p—
T
8
9

CLK —F ¢

COUNTERS = 339

» FIGURE 8-48 ax_[1] [2] 3] 51 [61 [71 [5] [5] [
@
—
QI
Counter -3 I
outpuis a, T
Q.‘
- 000y
[L LT O 0000 K== 1000
o -
L
2 L
3 L
Decoder 4]_I
amlpars
s L
s L
7 L
' L
’ LI
One way to eliminate the glitches is to enable the decoded outputs at a time after the
glitches have had ime to disappear. This method is known as strobing and can be accom-
plished in the case of an active-HIGH clock by using the LOW level of the clock to enable the
decoder, as shown in Figure §-49. The Iting imp: d timing diag is shown in
Figure §-50.
» FIGURE 8-49 CTRDIV 10 BCD/DEC
o p—
1 p—
@ . 1 p—
') Ip—
) 2 4 p—
! 4 sp—
2, . b
1p—
8 p—
j—b c rc EN 9 p—

CLXSTROBE

340 ® DIGITAL FUNDAMENTALS

- HEURE §-30 cuksTRoee |_[1] 2] 3] Ja] Js| Tel J71 fe] o] Ju] J

il [
. E B B EEEE B B
2 [}
3 L
Decuder |4 L
outputs | 3 L.l
: —o &
7 3]
8 = 2]
RS Ty TR SRR [T
| I:;ﬂl:." 80 1. What tramitional states are possible when a 4-bit asynchronows binary counter changes
from
! (a) count 2 to count 3 (b) count 3 to count 4
| () count 10,5 to count 114, (d) count 15 to count 0

COUNTER APPLICATIONS E T ey
The digital counter is a useful and versatile device that is found in many applications. In this
section, some representative counter applications are presented.

Alfter completing this section, you should be able to

= Describe how counters are used in a basic digital clock system = Explain how a
divide-by-60 counter is implemented and how it is used in a digital clock = Explain
how the hours counter is implemented = Discuss the application of a counter in an
automobile parking control system @ Describe how a counter is used in the process
of parallel-to-senal data conversion

Application Examples

A Digital Clock A common example of a counter application is in timekeeping systems.
Figure 8-51 is a simplified logic diagram of a digital clock that displays seconds, minutes,
and hours. First, a 60 Hz sinusoidal ac voltage is converted to a 60 Hz pulse waveform and
divided down to a | Hz pulse waveform by a divide-by-60 counter formed by a divide-by-10
counter followed by a divide-by-6 counter, Both the seconds and minutes counts are also pro-
duced by divide-by-60 counters, the details of which are shown in Figure 8-52, These coun-
ters count from O to 59 and then recycle to 0; synchronous decade counters are used in this
particular implementation, Notice that the divide-by-6 portion is formed with a decade
counter with a truncated sequence achicved by using the decoder count 6 to asynchronously
clear the counter. The terminal count, 59, is also decoded 10 enable the next counter in the
chain,

COUNTERS = 341

Divide-by-60
) Hz ac 1z
CTR DIV 10 CTRDIVS B s TS e BN s O
ANAN | S L._.1 EN . R =
e
E Hours counter Minutes counter (divide-by-60) Seconds counter (divide-by-60)
2 CTRDIV 10 CTRDIVE CTR DIV 10 CTRDIV6 CTRDIV I gy
c EN EN 1 EN EN 1
[l €< _l €3 (3 {—I C<f—
k] | T T T T T T
| i I : I
= l . HER
| BCINT-seg I] BCDYT-seg BCDNT-sep —‘ BCINT-seg | ‘ BCINT-sep BCDVT-seg |
T e T 'IUTJ OO sl e
T T T T Tl
| | | | 1] ‘ i |
H i 1 1ilfd | | |
— — — —
| = _ P Il
.
l ks £l) _ L
() (0-9) {0-5) 10-9) (-5} 10-9)
Hoars Minutes Seconds
4 FIGURE B-51
_E CLR CTRDIV 10 CLR Lc CLR
ENP ENP
HIGH ENT . o CTRDIVE
ey =
] J_ o
To next
CLK —# Decode & counter
SEIDS

Qe
o T T T,

units,

A FIGURE 8-52

Q00 0
[.

e

- To ENABLE
Decode 3%t neat CTR

Logic diagram of typical divide-by-60 counter using 74151604

The hours counter is implemented with a decade counter and a flip-flop as shown in
Figure B-53. Consider that initially both the decade counter and the flip-flop are RESET, and
the decode-12 gate and decode-9 gate outputs are HIGH. The decade counter advances
through all of its states from zero to nine, and on the clock pulse that recycles it from nine
back to zero, the flip-flop goes to the SET state (f = 1, K = 0). This illuminates a 1 on the
tens-of-hours display. The total count is now ten (the decade counter is in the zero state and

the flip-flop is SET).

342 = DIGITAL FUNDAMENTALS

Next, the total count advances to eleven and then to twelve. In state 12 the @, output of the
decade counter is HIGH, the flip-flop is still SET, and thus the decode-12 gate output is LOW.
This activates the LOAD input of the decade counter. On the next clock pulse, the decade
counter is preset to state 1 by the data inputs, and the flip-flop is RESET (J = 0, K = 1). As
you can see, this logic always causes the counter to recycle from twelve back to one rathe:
than back to zero.

oo

' [o[:[P1 [,

» FIGURE 8-53

LOAD 7
CTRDIV 10 — 2
T4LS160A =
CLK_E = r
> = 4]
-—
ﬂl
: Diecode 9 Gy
Decode
8|42 =slajz1 "V
BCDVT-seg BCIVT-seg
741847 T4L547
gfedeba gfedcba
= T
TTTTTT7 TTTTT7T
| — | S —
T umits-of-hours To tens-of-hoars
display display

Automobile Parking Control A simple application example illustrates the use of an
up/down counter to solve an everyday problem. The problem is to devise a means of monitor-
ing available spaces in a one-hundred-space parking garage and provide for an indication of a
full condition by illuminating a display sign and lowering a gate bar at the entrance.

A system that solves this problem consists of (1) optoelectronic sensors at the entrance and
exit of the garage, (2) an up/down counter and associated circuitry, and (3) an interface circuit
that uses the counter output to tumn the FULL sign on or off as required and lower or raise the
gate bar at the entrance. A general block diagram of this system is shown in Figure 8-54.

* FIGURE B-54
Entrance
sensor
OO
B Terminal .
CTR DIV 100 o] Imterface . i
owerRaise
Exit
Sensor Gate
activation

A logic diagram of the up/down counter is shown in Flgure 8-55. It consists of two
ded 74HC190 up/d decade The is described in the fol

paragraphs.)

JL From
entrance
sensar

FL From

COUNTERS = 343

i
CTEN
=

CTRDIV 10
74HCI90 RCO

i
p-o| cTEN
¢

CTR DIV 10
T4HC 190

f— MAX/MI..

exdt
senpor

& FIGURE 8-55

itially preset to 0 using the paraliel data inputs, which are not shown. Each
automobile entering the garage breaks a light beam, activating a sensor that produces an
electrical pulse. This positive pulse sets the 5-R latch on its leading edge, The LOW on the 0
output of the latch puts the counter in the UP mode. Also, the sensor pulse goes through the
NOR gate and clocks the counter on the LOW-10-HIGH wansition of its wailing edge. Each
time an sutornobile enters the gorage, the counter is ad i by one (i 1). When
the one-hundredth automobile enters, the counter goes o its last stute (100,5). The MAXMIN
output goes HIGH and activates the interface circuit (no detail), which lights the FULL sign
and lowers the gate bar to prevent further entry.

‘When an automobile exits, an optoelectronic sensor produces a positive pulse, which resets
the 5-R latch and puts the counter in the DOWN mode. The trailing edge of the clock
decreases the count by one (decremented). If the garage is full and an automobile leaves, the
MAX/MIN output of the counter goes LOW, turning off the FULL sign and raising the gate.

Parallel-to-Serial Data Ci (Multiplexing) A simplified example of dara

using iplexing and demuliiplexing technigues was i fuced in Chapter 6.
Essentially, the parallel data bits on the multiplexer inputs are converted to serial data bits on
the single transmission line. A group of bits appearing simultancously on parallel lines is
called paraliel data, A group of bits appearing on a single line in a time sequence is called
serial data.

Parallcl-to-serial conversion is normally accomplished by the use of a counter to provide a
binary sequence for the data-select inputs of a data sel Tip] as ill 1 in
Figure 8-56. The outputs of the modulus-8 counter are] to the data-select inputs
of an &-bit multiplexer,

= FIGURE B-55 CTRDIV & MUX

[

¢ ° Data
['A s Select

=

Parallel | Dy
dasaint

.-

howers gae,

Senal

it ot

344 w DIGITAL FUNDAMENTALS

Figure 8-57 is a timing diagram ill ing the operation of this circuit. The first byte
(eight-bit group) of parallel data is applied to the multiplexer inputs. As the counter goes
through a binary sequence from zero to seven, each bit, beginning with Dy, is sequentially
selected and passed through the multiplexer to the output line. After eight clock pulses the
data byte has been converted to a serial format and sent out on the transmission line. When
the counter recycles back to 0, the next byte is applied 1o the data inputs and is sequentially
converted to serial form as the counter cycles through its eight states. This process
continues repeatedly as each parallel byte is converted to a serial byte.

> FIGURE §-57

ax (L LAULAU LA LALLALY

g,

AT
Lo
:

[

=

D,

D, 0 H

D, 1

o

D, [

D, 1

DuhT|ln 1 ojo I|U 0

yie - 2nd byte

& - — = ey e —
| :Ezf,.:;:’"s 7 1. Explain the purpose of each NAND gate in Figure 8-53.
2. |dentify the two recycle conditions for the hours counter in Figure 8-51, and explain the |

| reason for each. |
EFSriea AT - X AR e e e

o o
[[T I S ——_— -

ojrjofa

=

|

346 = DIGITAL FUNDAMENTALS

Answers are at the end of the chapter,

1. Asynchronous counters are known as
{a) ripple counters (h) multiple clock counters
{c) decade counters (d) modulus counters
2. An asynchronous counter differs from a symchronous counter in
{a) the number of states in its sequence (b} the method of clocking
(e} the type of flip-Nops used {d} the value of the modulus
3. The modulus of a counter is
{a) the number of Nip-Mlops
{b) the actual number of states in its scquence
() the number of times it recycles in a second
{d) the maximum possible number of states
4. A 3-bit binary counter has a maximum modulus of

(a) 3 b) & () 8 o6
5. A 4-bit binary counter has a maximum modulus of
(n) 16 (b) 32 () 8 (d) 4

6. A modulus-12 counter must have
(@) 12 flip-flops (b) 3 flip-flops
(e} 4 Mlip-Nops (d) synchronous elocking
7. Which one of the following is an cxample of a counler with a truncated modulus?
(a) Modulus § (b) Modulus 14
(c) Modulus 16 (d) Modutus 32
8. A 4-bit ripple counter consists of flip-flops that each have a propagation delay from clock to
© output of 12 ns. For the counter o recycle from 1111 1o 0000, it takes a wotal of

(a) 12ns (b) 24ns {c)} 48 ns (d) 36ns

9. A BCD counter is an example of
() a full-modulus counter {b) adecade counter
(c) atruncated-modulus counter {d) answers (b} and {c)

10. Which of the following is an invalid state in an 8421 BCD counter?
(m) 1100 (b) 0010 () 0101 (d) 1000

11. Three cascaded modulus- 10 counters have an overall modutus of
() 30 (b} 100 {c) 1000 (d) 10,000

12, A 10 MHz clock frequency is applied toa ded counter isting of a modulus-5 counter,
4 modulus-8 counter, and two modulus-10 counters. The lowest output frequency possible is
(a) 10kHz (b) 2.5 kHz {e) SkHz {d) 25 kHz

13. A 4-bit binary up/down counter is in the binary state of zero. The next state in the DOWN mode is
(a) 0001 (b} 1111 (c) 1000) 1110

14, The terminal count of a modulus-13 binary counter is
(a) 0000 (b) 111 (e} 1101 {dy 1100

COUNTERS = 347

Answerns Lo odd-numbered problems are at the end of the book,
SECTION 8-1 Asnynch Counter Operati

Y

L. For the npple counter shown in Figure 8-60, show the complete timing diagram for eight clock
pulses, showing the clock, (. and {J; waveforms.

= FIGURE B-60 HIIGH

Juuiuyt

CLk

2. For the ripple counter in Figure 8-61, show the complete timing diagram for sixteen clock pulses
Show the clock, (. (. and (1. waveforms.

» FIGURE 8-61 HIGH

3. In the counter of Problem 2, assume that cach flip-fop has a propagation delay from the i,
alge of the clock 1o a change in the {0 vatput of 8 ns. Determine the worst-case (longesi) delay time
from 4 clock pulse 1o the ammival of the counter in a given stale, Specily the state or states for which
this worst-case delay occurs,

4. Show how to connect a TALS93A 4-bit counter for cach of the following moduli:
a9 b} 11 e 13 id) 14 ie) 15

SECTION 8-2 Synch Counter Operati
5. If the counter of Problem 3 were f rather than h what would be the longest
delay time?

6. Show the complete timing diagram for the 5-stage synchronous binary counter in Figure 862,
Verify that the waveferms of the outputs represent the proper binary nrumber afier each clock

pulse.
HIGH D
o, Iz o JF
Iy " ! 1 I I '
= > ¢ =X > © =
Ko K Ky 'S K,
CLEK —#—

4 FIGURE 8-62

343 = DIGITAL FUNDAMENTALS

7. By analyzing the J and K inputs to each flip-flop prios 1o each clock pulse, prove that the decade
counter in Figure 8-63 progresses through a BCD sequence. Explain how these conditions in each
case cause the counter (o go 1o the next proper siate,

HIGH
n"l

4 4
(1 1 a,

e - C

K X @,
FFO FF1

CLE—# +

4 FIGURE 8-63

8. The waveforms in Figure 8-64 are applied to the count enable, clear, and clock inputs as indicated.
Show the counter output waveforms in proper relation o these inputs. The clear input is asynchro-
nous,

» FIGURE 8-64 CTEN 1 ’—L CTR DIV 16
CTEN —
ax LU ax—pe

CLR —| CLR

a _] L TT11
LU U Y
9. A BCD decade counier is shown in Figure 8-65. The wavelorms are applied to the clock and clear

inputs as indicated. Dy ine the 1 for each of th outputs (Qo @y, Oz, and ().
The clear is synchronous, and the counter is initially in the binary 1000 state.

= FIGURE 8-55 CIRDV 10

ax— LTI —bc
—q

fr —
! ul P11
[v Y

10. The waveforms in Figure §-66 are applied 10 a T4HC163 counter. Determine the {0 outputs and the
HCO. The inputs are D, = 1,0y = 1,0y = 0, and By = 1.

» FIGURE 8-5& K [TJTLLr ‘L__r'!l_" |] _J—.J_-,_J'_I_J'—U'U—I_

L

a7

p " b=t}
T — L

LOAD e

11, The waveforms in Figure §-66 ure applied to a T4LS160 counter. Determine the ¢ outputs and the
RO, The inputs are Dy = 1. D) = 0.0, = 0, and Dy = 1.

SECTION 8-3

> FIGURE 8-67

COUNTERS = 34%

Up/Down Synchronous Counters

12, Show o complete timing diagram for a 3-bit up/down counter that goes through the following
seqquence. Indicate when the counter is in the UP mode and shen it is in the DOWN mode.
Assume positive edge-triggering.

0.01.2,32,1,2,3.4,565432 10

13. Develop the @ output waveforms for 2 74HC 190 up/down counter with the input waveforms shown

in Figure 8-67. A binary 0 is on the data inputs. Start with a count of D000,

SECTION B-4

» FIGURE 8-68

CTEN j

ax LML

Design of Synchranous Counters
14, Determine the sequence of the counter in Figure 8-68,
15, Determine the sequence of the counter in Figure 8-69. Begin with the couater cleared.
16. Design a counter to produce the following sequence. Use J-K flip-flops.
00, 10,00, 11,00, ...
17. Design a counter ww produce the following binary sequence. Use I.K flip-flops.
143,576,210, ...
18, Design a counter to produce the following binary sequence. Use J-K flip-flops.
0.9 1L8,27364,50 ...
18, Design a binary coanter with the sequence shown in the state diagram of Figure 8-70,

» FIGURE 8-69

HIGH

CLK —8—

COUNTERS w351

» FIGURE 8-72 BINDEC

o p—
CTRDIV 16 | p—
2 p—
ip—
4 p—
Qs spP—

2, | 6P
— 12 1P
el 2 b—
@y R 4 p—
1 pr—
" p—
1p—
ax 13—
J'.J“.J_LI'IJ UyLruraruutt o 14—
1456 T8 8 IDIIZI3I41506 15—

25, If the counter in Figure §-72 is asynchronous, defermine where the decoding glitches occur on the
decosder output waveforms,

26. Mudkify the circuit in Figure 8-72 to climinate decoding glitches.

27. Analyze the counter in Figure 845 for the occurrence of glitches on the decode gate outpat, 1f
plitches occur, suggest a way 1o climinate them.

28. Analyze the counter in Figure $-46 for the occurrence of glitches on the outputs of the decoding
pates. If glitches occur, make a design change that will eliminate them,

SECTION 8-7 Counter Applications

29. Assume that the digital clock of Figure 8-51 is initially reset 1o 12 o'clock. Determine the binary
state of each counter after sixty-two 60 Hz pulses have occurred.

30. What is the output frequency of each counter in the digital clock circuit of Figure 8-517

3. For the automobsile parking control systern in Figure $-54, a patiern of entrance and exil sensor
pulses during a given 24-hosr period are shown in Figure §-73. If there were 53 cars already in the
gerage at the beginning of the period, what is the state of the counter a1 the end of the 24 hours?

32, The binary number for decimal 57 appears on the parallel data inputs of the parallel-to-serial
converter in Figure 856 (1) is the LSB). The counter initially contains all zeros and a 10 kHz clock
it applied, Develop the timing diagram showing the clock, the coanter outputs, and the serial data

outpal.
> FIGURE 8-73 Eowrasce | ynn nap pRA M RAARA L AN R AR A RN ARE MNREA 1
SCmsOf |
i
Exit |z T M Coarnn
st I n__ AR LR RS 5 A
o

SECTION REVIEWS

SECTION -1 Asnch ‘Counter Op
1. Asynchronous means that each flip-flop after the first one is enabled by the output of the preceding
flip-flep.

2. A modulus-14 counter has fourteen states requiring four fip-flops.

COUNTERS = 353

B-5 See Table 8-13.

B Application of Boolean algebra 1o the logic in Figure 8-37 shows that the output of each OR
gate agrees with the expression in step 5.

LKA ———d>C
CLEB ———d>C
Bovi | TALS®IA UPDOWN
BOND) ox _[7
@& [
&)4
} @ I
Vi
GOn alis!
A FIGURE 8-75 A FIGURE 8-7&

¥ TABLE £-13

PRESENT
INVALID STATE

_!-#;Z INPUTS NEXT STATE -
Ky Qo :

valid state
valid state

R g o

i
1
1
1

B-T Five decade counters are required, 10° = 100,000
B8 fu = 1 MHZ[(10X2)] = 50kHz
B9 See Figure 8-77.

oD

4 FIGURE 8-77

SELF-TEST
1. ta) 2. (b} 3. (b 4. (c) 5. (n) 6. (c) 7.ib) 8. (<)
9.) 0. (a) 1L {c) 12 (h) 13 ib) 4.)

SHIFT REGISTERS

" Ut gt et it dt con-
verter

u |dentify the basic forms of data movement in shift registers = Impl » basic shift-regist tled keyboard en
u Explain how serial infierial out, serial infparaliel out, parallel

infserial out, and parallel infparallel out shift registers operate
® Deicribe how a bidirectional shift register operates Shift registers are a type of sequential logic circuit closely
related to digital counters. Registers are used primarily for
the storage of digital data and typically do not possess a

Determine the sequence of a Johmon counter

u Setup a ring counter to produce a specified sequence characteristic internal sequence of states as do counters.
® Comtruct a ring counter from a shift register Ths s "; ?wepﬂons, hesever, and theie are covered fn .
u Use a shift register a1 a time—delay device In this chapter, the basic types of shift registers are studied

and several applications are presented.

BASIC SHIFT REGISTER FUNCTIONS

Shift registers consist of an arrangement of flip-flops and are important in applications
involving the storage and transfer of data in a digital system, A register, unlike i counter, has
no specified sequence of states, except in certain very specialized applications. A register, in
general, is used solely for storing and shifting data (15 and 0s) entered into it from an exter-
nal source and typically poss: s 0 istic intemal of states,

=

After completing this section, you should be able to

= Explain how a flip-flop stores a data bit - ® Define the storage capacity of a shift register
= Define the shifting capability of a register

A register is a digital circuit with two basic functions: data storage and data movement.
The storage capability of a register makes it an important type of memory device. A register
can consist of one or more flip-flops used to store and shift data. Figure 9-1 illustrates the
concept of storing a 1 or a 0 in a D flip-flop. A | is applied to the data input as shown, and a
clock pulse is applied that stores the 1 by sering the flip-flop. When the 1 on the input is
removed, the flip-flop remains in the SET state, thereby storing the 1. A similar procedure
applies to the storage of a 0 by resenring the flip-flop, as also illustrated in Figure 9-1.

| s stovei] ~———y

SHIFT REGISTERS = 355

Ir 0 s stored ———l
$ |l g I] V+3 11 —— 0]
! When a | ison 2, L When a0 ison .
ax fL P {becomes a | at the ax fL e @ becomes a 0 at the
triggering edge of CLK triggering edge of CLK
of remains a | if already of remadns a 0 if already
inthe SET state in the RESET state
A FIGURE #-1
The flip-flop as a storage element.

The storage capacity of a register is the total number of bits (15 and 0s) of digital data it
can retain. Each stage (flip-flop) in a shift register represents one bit of storage capacity:
therefore, the number of stages in a register determines its storage capacity.

The shifting capability of a register permits the movement of data from stage to stage
within the register or into or out of the register upon application of clock pulses. Figure 9-2
illustrates the types of data in shift regi The block any arbitrary
4-bit register, and the arrows indicate the direction of data movement.

Data in
Puain @—' Pt Pt @ P %‘ Praout
(0} Serial infshift right'serial ou (b} Serial in'shift lefu/serial ous i) Parallel infserial ot

Data in

-FF (11D Fzes)

IERR) P

Duaea ot Dtz put
(d) Serial infparaliel out ie) Parallel infparallel oan (F) Rotate right ig) Rotnte beft
A FIGURE 9-2

Baic data movement in shift registers.

FFH) FF1 FF2 FF3
Data 0 0 o o
— ——n D n
oput @y
b o - —t=c b o
Repister initially
CLEAR
| b
CLK +
st data it = 01 n L A S Yip g,
- C —Fc |—->- [—=C
I Afier CLK1
|
cukr _f :
2nd duta bit = | i S Pt S P S Lg
> C > C e —=C
After CLK2
cik2 _f
3ed data bit = 0 p o b b g
- c —c —>C —=c
After CLK3
cLky _f
1 dota bit = | N B i e e L I SRR B S
Fc —c — € 1 C | Aber CLK4, e 4-bi
| murmber is completely
'! stored in register
cika _f |

A FIGURE %-4

1f you want to get the data out of the register, the bits must be shifted out serially and taken
off the (33 output, as Figure 9-3 illustrates. After CLK4 in the data-entry operation just
described, the right-most bit, 0, appears on the 5 output. When clock pulse CLES is applied,
the second bit appears on the 04 output. Clock pulse CLKS shifis the third bit to the output,
and CLK7 shifts the fourth bit to the output. Notice that while the original four bits are being
shifted out, more bits can be shifted in. All zeros are shown being shifted in.

SHIFT REGISTERS ® 357

(L]

A FIGURE 9-&

SHIFT REGISTERS = 359

Dists bits stored
after five
chock pulses

Solution The first data bit (1) 1s entered into the register on the first clock pulse and then shifted
from left to ight as the remaining bits are entered and shifted. The register contains
000040 = 11010 after five clock pulses, See Figure 9-6(h),

Supplementary Problem Show the states of the register if the data input is inverted. The register is mitially cleared.

360 ® DIGITAL FUNDAMENTALS

A traditional logic block symbaol for an 8-bit serial infserial out shift register is shown in
Figure 9-7. The “SRG 8" designation indicates a shift register (SRG) with an 8-bit capacity.

» FIGURE 9-7 Skl SRGE -
CLK —=C b— G,
= I‘m:“ =2 1. Develop the logic diagram for the shift register in Figure 9-3, uh-g)-xmp-ﬁopm :
| replace the D flip-flops.

2. How many clock pulses are required to enter a byte of data serially into an 8-bit shift
register?

[9Z300 sERIAL IN/PARALLEL OUT SHIFT REGISTERS

Data bits are entered serially (right-most bit first) into this type nf mgule: in the same
manner as discussed in Section 9-2, The difference is the way in which the data bits are
taken out of the register; in the parallel output register, the output of sach stage is available.
Once the data are stored, each bit appears on its respective output line, and all bits are
available simultaneously, rather than on a bit-by-bit basis as with the serial output.

After completing this section, you should be able 1o

= Explain how data bits are taken out of a shift register in parallel » Compare serial output
o paruIlcl output = Du-w.u the 74HC 164 &hll. shift register = Develop and analyze
timing di for serial i llel out

Figure 9-8 shows a 4-bit serial in/parallel out shift register and its logic block symbol.

Dasn inpet ——{ D D D]

= B - E- ¢

Datsisput—| p SRG4

OKk—fC

' ' L]]

& @ Q: & QOO
oy (L]

A FIGURE 9-8
A serial infpacallel out shift register

SHIFT REGISTERS = 361

| EXAMPLE 9-2
Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in

Figure 9-9(a). The register initially contains all Is.

- FIGURE 9-9) —

(L] & —L_._._

Solution The register contains 0110 after four clock pulses. See Figure 9-9(b),

Supplementary Problem If the data input remains 0 after the fourth clock pulse, what is the state of the register after
three additional clock pulses?

AN 8-BIT SERIAL IN/PARALLEL OUT SHIFT REGISTER

The T4HC164 is an example of an IC shift register having serial in/parallel out operation. The
logic diagram is shown in Figure 9-10(a), and a typical logic block symbal is shown in
part (b). Notice that this device has two gated serial inputs, A and B, and a clear (CLR) input
that is active-LOW. The parallel outputs are @, through (5.

A sample timing diagram for the 74HC164 is shown in Figure 9-11. Notice that the serial
input data on input A are shifted into and through the register after input B goes HIGH.

) {>o— T 1

LK D + + —
L | ;
"'""“'{ .J.D R o S P &
mputs | i~ I i 1
- = ‘g L = e
|
ic|> 5 |5 |5 |5 1
|
| | |
-Ssl (2] 15 13y
|
[& @ @

{a) Logic diagram
4 FIGURE 9-10

362 m DIGITAL FUNDAMENTALS

A '_1‘ SRG§
a l;l
g 9
Ccilk —49
CLK ® >
c
3

[4:| :51 (®)] {u:|

Qo @) @& O s 05 O
1) Logic symbol

umluu]nz:

A FIGURE 7-10 (i d)

Outputs

A FIGURE 7-11

'I“iﬂé?vﬂ 2 1. The bit sequence 1101 i serially entered (right-most bit first) into a 4-bit parallel out

shift register that is initially clear. What are the Q cutputs after two clock pulses?
2. How can a serial infparallel out register be used as a serial infserial out register?

SHIFT REGISTERS = 363

=4 | PARALLEL IN/SERIAL OUT SHIFT REGISTERS __

For a register with parallel data inputs, the bits are entered simultaneously into their respec-
tive stages on parallel lines rather than on a bit-by-bit basis on one line as with serial data
inputs. The serial output is the same as described in Section 9-2, once the data are com-
pletely stored in the register.

Alfter completing this section, you should be able to

= Explain how data bits are entered into a shift register in parallel - » Compare serial input
to paraliel input ® Discuss the 74HC165 8-bit parallel-load shift register @ Develop and
analyze timing diagrams for parallel infserial out registers

Figure 9-12 illustrates a 4-bit parallel infserial out shift register and a typical logic
symbol. Notice that there are four data-input lines, Dy, Dy, Dy, and Dy, and a SHIFTILOAD
input, which allows four bits of data to load in parallel into the register. When SHIFT/LOAD
is LOW, gates G, through G, are enabled, allowing each data bit to be applied to the D input
of its respective (lip-flop. When a clock pulse is applied, the Mip-flops with D = 1 will set and
those with) = 0 will reset, thereby storing all four bits simultaneously.

I, n, D i,
—]
SHIFTILOAD —[—4> J
1 ‘ Gy !
T
=
|
J Serial
H PN =
o LS
~=c [— =4
CLK ‘
ia) Logic diagram
Datsin
b, D, D Dy
SHIFTILOAD — SRG4
Serial duto ot
CLK —f=C
ih) Logic symbol

A FIGURE 9-12

364 w DIGITAL FUNDAMENTALS

S o=a

When SHIFTILOAD is HIGH, gates G, through G, are disabled and gates G, through G,
are enabled, allowing the data bits 1o shift right from one stage to the next. The OR gates
allow either the normal shifting operation or the parallel data-entry operation, depending on
which AND gates are enabled by the level on the SHIFTILOAD input.

]
SthMWmhuthﬁmmmuiwdmmﬁ . i
clock and SHIFTILOAD waveforms given in Figure 9—13(a). Refer 1o Figure 9-12(a) for |
the logic diagram. |

> FIGURE 9-13 |
D, b, Dy Dy |
Lo 1 o0 i
11 |
SHIFTILOAD —O SRG4 1
— Dataout i@y |
Lk — ¢ 1
|
i
CLE 1 2 3 4 5 [

I i 1

® sHFnioad I i
i

H |
1 1
(b} Data owt (240 ,_,_._,_,_! 1__! m |

Las: data bt

On clock pulse 1, the parallel data (DolD3D; = 1010} are loaded into the register,
making @y a 0. On clock pulse 2 the 1 from ©, is shifted onto Oy; on clock pulse 3 the 0 is
shifted onio Qy; on clock pulse 4 the last data bit (1) is shifted onto @y; and on clock pulse
5, all data bits have been shifted out, and only Ismndninmm;im{mminsm
D input remains a 1). See Figure 9-13(b).

ﬂmﬂwdﬁ&wmwndmfwmenbd:udmmmh
Fgmeﬂ-ﬂ[l) if the plrﬂ]:ldua are DpDyDyDy = G101,

AN 8-BIT PARALLEL LOAD SHIFT REGISTER

The 74HC165 is an example of an IC shift register that has a parallel infserial out operation
(it can also be operated as serial in/serial out). Figure 9-14(a) shows the internal logic
diagram for this device, and part (b) shows a typical logic block symbol. A LOW on the
SHIFTILOAD input (SH/LD) enables all the NANTY gates for paralle] loading. When an input
data bit is a 1, the flip-tlop is asynchronously set by a LOW out of the upper gate. When an
input data bit is a 0, the flip-flop is asynchrenously reset by a LOW out of the lower gate,
Additionally, data can be cotered serizlly on the SER input. Also, the clock can be inhibited
anytime with a HIGH on the CLK INH input. The serial data outputs of the register are 0+ and
its | ;. This impl ion is different from the synchronous method of parallel
lnading previously discussed, demonstrating that there are usually several ways to accomplish
the same function.

SHIFT REGISTERS = 367

Figure 9-16 shows a parallel infparalle! out register.

Parallel data imputs.
——

By o, 0,

-

T
1~
=
— %)
~]

CLKE ‘ | » |

& @ & [n

'aralicl dato puiputs

4 FIGURE 9-186

A 4-BIT PARALLEL-ACCESS SHIFT REGISTER

The T4HC195 can be used for parallel infparalle]l out operation. Because it also has a serial
input, it can be used for serial infserial out and serial in/parallel out operations. It can be used
for parallel in/serial out operation by using 0y as the output. A typical logic block symbel is
shown in Figure 9-17.

= FIGURE -17 [EP A

’H] I.{S; (6} ‘m

SRG4

2y

. i
Serial [N
|n'rm|.1l. PR
W
Sty —9
i —

10
ak e

Tas) ‘um ‘nsy [rlzn

|

& ot 0 2

‘When the SHIFT/ILOAD input (SHILD) is LOW, the data on the parallel inputs are entered
synchronously on the positive transition of the clock. When SHILE is HIGH, stored data will
shift right (@ 10 @y) synchronously with the clock. Inputs J and K are the serial dat inputs 1o
the first stage of the register (2y): (7 can be used for senal output data. The active-LOW clear
input is asynchronous.

The timing diagram in Figure 9-18 illustrates the operation of this register.

370 = DIGITAL FUNDAMENTALS

A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

The 74HC194 is an example of a universal bidirectional shift register in integrated circuit
form. A universal shift register has both serial and parallel input and output capability.
A logic block symbol is shown in Figure 9-21, and a sample timing diagram is shown in

Figure 9-22.

FIGURE 9-21 D, B DDy
\ |3 ‘{d: "5? 15}
fin — SRG 4
1%
5y]
5 1]
1
\'ﬂt.\!{k‘#
st sik ——U2
crg —0] =
|u:r [CREEROE
i
G O & o

Made |

cartni

(]

inpute

-[- -"-—n'

CLR i

R -

Serial ;/ Sk SER
FLET
inputs | 5L SER

C e

|
putaiober i ufulet

[l
i
'
]
i
I H
i
I
|
'
1
"

s

& FIGURE 5-21

Shift ke =

== Inhibit

Clear

SHIFT REGISTERS = 371

Parallel [n'l:llng which is synchronous with a positive transition of the clock, is accom-
plished by applying the four bits of data to the parallel inputs and a HIGH 1o the 5, and 5,
inputs. Shift right is accomplished synchronously with the positive edge of the clock when Sy
is HIGH and §, is LOW. Serizl data in this mode are entered at the shifi-right serial input (SR
SER). When 8, is LOW and §, is HIGH, data bits shift left synchronously with the clock, and
new data are entered at the shift-left serial input (SL SER). Input SR SER goes into the O
stage, and 5L SER goes into the @y stage,

| SECTION 9-6
REVIEW 1. Asume that the 4-bit bidirectional shift register in Figure 9-19 has the following

contenti: G = 1, @, = 1, @ = 0, and @, = 0. There is a | on the serial data-input line.
If RIGHT/LEFT is HIGH for three clock pulses and LOW for two more clock pulses, what
are the contents after the fifth clock pulse?

' SHIFT REGISTER COUNTERS

A shift register counter is basically a shift register with the serial output connected back to
the serial input to produce special sequences. These devices are often classified as counters
wse they exhibit a specified sequence of states, Two of the most common types of shift
register counters, the Johnson counter and the ring counter, are introduced in this section,

After completing this section, you should be able 1o

® Discuss how a shift register counter differs from a basic shift register ® Explain the
operation of a Johnson counter ® Specify a Johnson sequence for any number of bits

= Explain the operation of a ring counter and determine the sequence of any specific ring
counter

The Johnson Counter

In a Jot counter the complement of the cutput of the last flip-flop is connected back to
the 12 input of the first flip- I'Iup (it can be |mp1emenied with other types of flip-fops as well).
This feedback ar a istic seq of states, as shown in
Table 9-1 for a 4-bit device and in Table 9-2 for a 5-bit device. Notice that the 4-bit sequence
has a total of eight states, or bit patterns, and that the 5-bit sequence has a total of ten states. In
general, a Johnson counter will produce a modulus of 2n, where n is the number of stages in
the counter,

» TABLE 9-1

CLOCKPULSE Qs Qi Q; @y

B - Y P R

o o o =
S e

372 = DIGITAL FUNDAMENTALS

> TABLE %-2

The implementations of the 4-stage and 5-stage Johnson counters are shown in
Figure 9-23. The implementation of a Johnson counter is very straightforward and is the same
regardless of the number of stages. The @ output of each stage is connected to the D input of
the next stage (assuming that D flip-flops are used). The single exception is that the O output
of the last stage is connected back to the D input of the first stage. As the sequences in
Table 9-1 and 9-2 show, the counter will “fill up™ with 1s from left to right, and then it will

*“fill up” with Os again.

CLOCK PULSE @,

=

LT T S S

=

O e] o ekl

Qi Q:
0 o
o 0
1 o
1 1:
! 1
1 1
1 1
0 1
0 0
0 0

I T - |

ols o
R e Lt

ey

CLK

[FFO FF1 FF2 FF3
» el led, lel,
- C =~ C & C =
o
(ah Four-bit Johnson counter
\‘ FF) FF1 FF2 FF3 FF4
! '
b [b @ o & B 2 b
e C - C > C > C - C

CLK —*

(b) Five-bit Johnson counter

4 FIGURE 9-23

Diagrams of the timing operations of the 4-bit and 5-bit counters are shown in

Figures 9-24 and 9-25, respectively.

SHIFT REGISTERS = 373

> FIGURE 9-24 m_ﬁ_ 13! LF[_IH_ "l
T g e S
o L
B e Gk]Il |=1 S S L .?[____TL__WL_JT{_"_"L
af 1 A
o | A
& i —

- The Ring Counter

The ring counter utilizes one flip-flop for each state in its sequence, It has the advantage that
decoding gates are not required. In the case of a 10-bit ring counter. there is a unigque output
for each decimal digit.

A logic diagram for a 10-bit ring counter is shown in Figure 9-26. The sequence for this
ring counter is given in Table 9-3. Initially, a 1 is preset into the first flip-flop, and the rest of
the flip-flops are cleared. Notice that the interstage connections are the same as those for a
Johnson counter, except that Q rather than (0 is fed back from the last stage, The ten outputs
of the counter indicate directly the decimal count of the clock pulse. For instance, a 1 on
represents a zero, a | on Q) represents a one, a | on (; represents a two, a 1 on Q represents
a three, and so on. You should verify for yourself that the | is always retained in the counter
and simply shifted “around the ring,” advancing one stage for each clock pulse.

PRE ————

CLR
CLK

4 FIGURE 9-26

374 = DIGITAL FUNDAMENTALS

* TABLE 9-3

|EXAMPI.€ 9-5

Solution

ok !

CLOCK PULSE

0 1 0
I 0 I
b (U] 0
3 0 0
4 (1] L]
5 o 0
i 0 o
L 0 0
8 0 o
9] o

Muodified sequences can be achicved by having more than a single 1 in the counter, as

trated in Example 9-5.

D alo o —oea

I a0 0 =ocoa o

illus-

If a 10-bit ring counter similar to Figure 9-26 has the initial state 1010000000, determine

the waveform for each of the 0 outputs.
See Figure 9-27.

ET I E1 |

=]
=

;

@y

it

@5

&

143

[N

Supplementary Problem

A FIGURE 9-27

If a 10-bit ring counter has an initial state 0101001111, determine the waveform for each

Qoutput

SHIFT REGISTERS = 375

| :iﬂ:?vn =1 1. How many states are there in an 8-bit Jehnson counter sequence!

2. Write the sequence of states for a 3-bit Johnson counter starting with 000.

SHIFT REGISTER APPLICATIONS

Shift registers are found in many types of applications, a few of which are presented in this
section.

Allter completing this section, you should be able 1o

® Use u shift register to generate o time delay ® Implement a specified ring counter
sequence using @ TAHC 195 shift register ™ Discuss how shift registers are used for serial-
to-paraliel conversion of data @ Define UART = Explain the operation of a keyboard
encoder and how registers are used in this application

Time Delay

The serial in/serial out shift register can be used to provide o time delay from input to
output, that is, a function of both the number of stages (n) in the register and the clock
frequency.

When a data pulse is applicd to the serial input as shown in Figure 9-28 (A and B
connected together), it enters the first stage on the riggering edge of the clock pulse. It is then
shifted from stage to stage on each successive clock pulse until it appears on the serial output
n clock periods later. This time-delay operation is illustrated in Figure 9-28, in which an 8-bit
serial infserial out shift register is used with a clock frequency of 1 MHz to achieve a time
delay {14) of 8 us (8 % 1 us). This time can be adjusted up or down by changing the clock
frequency. The time delay can also be increased by cascading shift registers and decreased by
taking the outputs from successively lower stages in the register if the outputs are available, as
illustrated in Example 9-6.

4 [
Data in] i Diata out
CLK | O
1 MHz P
1gs
LK | !
' :
Daain |)
Dataowt . — — | |
- P ——————

i i

A FIGURE 9-28

376 w DIGITAL FUNDAMENTALS

I EXAMPLE 9-6
Determine the amount of time delay between the serial input and each output in

Figure 9-29. Show a timing diagram 1o illustrate.

» FIGURE 9-29

A
Data in —E SRG A"

| CIR ——
CLK = c
500 kHz | J | |

T]
|

o @ Oy Oy Q0 05 Qs
* Data shifts from O toward (.

Solution The clock period is 2 ps. Thus, the time delay cun be increased or decreased in 2 ys incre-
ments from a mini of 2 pstoa il of 16 ps, as illustrated in Figure 9-30,

< 20 I) g W i 8 LB o = L 77 7 IS A P

Daaie _| e e ey e e
(€ _1 | 5
i i
e i |
i t
e _ 1 il
T i 1
il | | ! | H |]
Yata T T +]
oopats | @, ! ! ! ! I
P T I B e
i T T i] +
Qi ! i H H H |
T T T i 1)] T i
ot 0 Lu L INE SUBERE G [N
b -2 g i i i i i i |
i i i [i i i i
— s — i ' i i i i
i])]]]]
p—em——tt yilithd 3hE e T
Lo — K — -4 1]]]
0] | i i
b 1 1 1
12] i
e 144 ——]
Ihgrs]
A FIGURE 9-30
Supplementary Problem Dy ine the clock freg quired to obtain a time delay of 24 us o the ; output in

Figure 9-29,

SHIFT REGISTERS = 377

A RING COUNTER USING A 74HC195 SHIFT REGISTER

If the output is connected back to the serial input, a shift register can be used as a ring counter.
Figure 9-31 illustrates this application with a 74HC195 4-bit shift register,

= FIGURE ?-31

HIGH LOW
M.lu) |5 o6 o0 17
(FiE] SRG 4
(EITS
smin 2
érx g

CLK (ALY c

[us; |{m](ij (12)

& & @ @

Initially, a bit pattern of 1000 (or any other pattern) can be synchronously preset into the
counter by applying the bit patter to the paralle] data inputs, taking the SH/LD input LOW,
and applying a clock pulse, After this initialization, the 1 i 1o circulate through the
ring counter. as the timing diagram in Figure 9-32 shows.

FIGURE 9-32 S

Serial-to-Parallel Data Converter

Serial data transmission from one digital system to another is commonly used to reduce the
number of wires in the transmission line. For example, eight bits can be sent serally over one
wire, but it takes eight wires o send the same data in parallel,

A computer or mic based system ly requires i ing data 1o be in
parallel format, thus the requirement for senial-to-paralie] ¢ ion. A simplified serial-t
parallel data converter, in which two types of shift registers are used, is shown in Figure 9-33.

To illustrate the opetation of this serial-to-parallel converter, the serial data format shown
in Figure 9-34 is used. It consists of eleven bits, The first bit {start bit) is always 0 and always
begins with 2 HIGH-10-LOW transition. The next eight bits (D; through Dg) are the data bits
fone of the bits can be parity), and the last two bits (stop bits) are always 15. When no data are
being sent, there is a continuous | on the serial data line.

SHIFT REGISTERS = 379

= FIGURE 9-35

Serizl 77 Swam
daain | hit |
Conmol o f
fip-fiop ¥ ——
CLK

=

ea | g,
inpu ¢
regster 'R

TUSCLK

i e e e]
I
v

i
Dow | Dy i
3 i

'
Dy 10
- 1
n, L
U —_ ; ——
\ Dy |1
I
Load data out register
= FIGURE 9-3& Puzadlel
data baas
s
>
Sexial duta out
Micro-
. Extemal
processe UART | it durain h,.:
system
iprinter, commmunicalions
system, elc.)

A UART includes a serial-to-parallel date converter such as we have discussed and a
parallel-to-serial converter, as shown in Figure 9-37. The data bus is basically a set of parallel
conductors along which data move between the UART and the microprocessor system.
Buffers interface the data registers with the data bus,

380 w GiGITAL FUMDAMENTALS

* FIGURE 9-37 Diats bus
Basic UART block diagram.

Transmister, Recanver
data Teginter duta fepmier
Transmigter
o

Serial data ous Serial data in

The UART receives data in serial format, converts the data to parallel format, and places
them on the data bus. The UART also accepis parallel data from the data bus, converts the
data vo serial format, and tramsmits them to an external device.

Keyboard Encoder

The keyboard encoder is a good example of the application of a shift register used as a ring
counter in conjunction with other devices, Recall that 2 simplified computer keyboard encoder
without data storage was presented in Chapter 6.

Figure 9-38 shows a simplified keyboard encoder for encoding a key closure in a 64-key
malrix organized in eight rows and eight columns, Two T4HC195 4-bit shift registers are
connected as an 8-bit ring counter with a fixed bit pattem of seven 1s and one 0 preset into it
when the power is turned on. Two 74HC147 pricrity encoders (introduced in Chapter 6) are
used as eight-line-to-three-line encoders (9 input HIGH, 8 output unused) to encode the ROW
and COLUMN lines of the keyboard matrix. The T4HC174A (hex fMip-flops) is used as a
parallel in/parallel out register in which the ROW/COLUMN code from the priority encoders
is stored.

The basic operation of the keyboard encoder in Figure 9-38 is as follows: The ring
counter “scans” the rows for a key closure a5 the clock signal shifis the 0 around the counter
at a 5 kHz rate. The 0 (LOW) is sequentially applied 1o each ROW line, while all other
ROW lines are HIGH, All the ROW lines are connected to the ROW encoder inputs, so the
3-bit output of the ROW encoder at any time is the binary representation of the ROW line
that is LOW. When there is a key closure, one COLUMN line is connected to one ROW
line. When the ROW line is taken LOW by the ring counter, that particular COLUMN line
is also pulled LOW. The COLUMN encoder produces a binary output corresponding 1o the
COLUMN in which the key is closed. The 3-bit ROW code plus the 3-bit COLUMN code
uniquely identifies the key that is closed. This 6-bit code is applied to the inputs of the key
code register. When a key is closed, the two one-shots produce a delayed clock pulse 1o
parallel-load the 6-bit code into the key code register. This delay allows the contact bounce
to die out. Also, the first one-shot output inhibits the ring counter to prevent it from
scanning while the data are being loaded into the key code register.

The 6-bit code in the key code register is now applied 1o a ROM (read-only memory) to be
© i to an T I ic code that identifies the keyboard character. ROMs

are studied in Chapter 10,

Ring counter

IDADA0Y

J_L oo
" -:' SRG4

D, |

SHIFT REGISTERS

s
| K SRGA r |
CLK 1 namcies TAHC 195 |
(SkHz) - b +¥
[&[0]| r | os| 2
I IS99 S
TTEE3 =
a PalaYulFuls i
AraEa ey £
a Ol ety s
| PPl F
L] PPl arsrs 2
| Pl slalsrs Foi
Ji ezl 7
< ety ¥
Rt Eas ol
Clock inhibit . | |
1 e B e B« S« B B s [+3 [s] L
123 4 56 78 1231 4 5618
ROW encodder COLUMN encoder
T4HCI4T TAHC147
1 2 4

T
|
i

=

|

SECTION 9-8
REVIEW

TAHC1T4A

Y
c 1 s
Key cude register

ol @&

To ROM

4 FIGURE 9-38

(‘:| o | r.1.| s

i

1. In the keyboard encoder, how many times per second does the ring counter ican the
keyboard?

2. What is the é-bit ROW/COLUMN code (key code) for the top row and the left-most
column in the keyboard encoder?
3. What is the purpese of the diodes in the keyboard encoder? What is the purpese of the
resiston?

382 = DIGITAL FUNDAMENTALS

® The hasic types of data movement in shift registers are illustrated in Figure 9-39.

Datain

Dhata o —@— Dt out Data ot ——@ Dl in Drata ouz

[} Serial in/shift ightfserial o (b} Serial infshift lefifserial out () Parudlel infserial out

Dt im

TITT TT177T

(LT

iy Serial infparallel out

1

Drata ot

(eh Paratle] infparallel out i) Rotate right 1) Rotate left

A FIGURE 9-3%

® Shift register counters are shift registers with feedback that exhibit special sequences, Examples are
the Johnsan counter and the ring counter,

® The Johnson counter has 2n states in its sequence, where i is the number of stages.
® The ring counter has n states in its sequence.

Answer are at the end of the chapter.

1. A stage in 2 shift register consists of
fa) alaich (b) aflipflop (e} abyte of storage {d) four bits of storage
. T serially shift 2 byte of data into a shift register, there must be
(@) one clock pulse (b} one load pulse
(c) eight clock pulses (d) one ciack pulse for each | in the data
To parallel load u byte of data into a shift register with a synchronous load, there must be
{a) ome clock pulse (b} one clock pulse for each 1 in the data
(e} cight clock pulses (d) one clock pulse Tor each 0 in the dats
4. The group of hits 10110001 is serially shifted (right-most bit first) into an 8-bit parallel output shift
register with an initial state of 11100100, Afier two clock pulses, the register contains
(@) OLOLLLI0 by 10THNOL (e} D100 d) 00101101
5. With a 100 kHz clock frequency, eight bits can be serially entered into a shift register in
{m) 8Os (b Bps (e} KDms) 10 s
6. With 1 | MHz clock freguc ight bits can be parallel entered into a shift register
(ad inBps (b inthe propagation delay time of cight Mip-flops
[GRUEFT {d) in the propagation delay time of one Mip-flop

e

-

384 = DIGITAL FUNDAMENTALS

6. For the serial infseriul out shift register, determine the data-output waveform for the data-input and
clock waveforms in Figure 943, Assume that the register is initially clearsd.

[Serial duta ot

A FIGURE 9-43

7. Solve Problem 6 for the waveforms in Figure 9-44.

- FiGuRe 9-44 o UL UL UL UL
: Il

Seratdmatn Lt [

8. A leading-edge clocked serial infserial out shift register has a data-output waveform as shown in
Figure 9—45. What binary aumber is siored in the £-bit register if the fira data bit out (left-most) is
the LSB?

FIGURE 9-45 Data out

SECTION 9-3 Serial InfParallel Out Shift Registers
9. Show a complete iming diagram showing the paralle] outputs for the shifl register in Figure 9-8,
Use the waveforms in Figure 343 with the register initially clear.
10, Sobve Problem @ for the input waveforms in Figure 944,
1. Develop the (@, through ; outputs for a 74HC 164 shift register with the mput waveforms shown in
Figure 9—46.

= FIGURE 9-46 CLE

SHIFT REGISTERS & 385

SECTION 9-4 Parallel In/Serial Out Shift Registors

12. The shif register in Figure 9—$7(a) has SHIFTFLOAD and CLK inputs as shown in part (b). The
serial data input (SER) is a 0. The paralle] data inputs are £ = 1, 0, = 0, I = |, and
I3 = 0 as shown, Develop the data-oatput waveform in relation to the inpats.

By by, by by
I‘ |‘I || IU CLK I 1
SHIFTLOAD ——d SRG 4 i
SER ——1 — E:' SHIFTILOAD et
CLE —{=C
e ™
& FIGURE 9-47
13, The waveforms in Figure 948 are applied 1o a TAHC165 shift register. The paralle] inputs are all 0.
Determine the {J; wavefom.
= FIGURE 9-48 LK _i'—LJI—;_r—_r—!_l'—'_ M L
[
i

swip 34 T

[
o
-,
I
o
[
1 ——

SER 4 a0
]
[

1
[T 7 T T N S

|
| S—

14, Solve Problem 13 if the paralled inputs are all 1.
15. Solve Problem 13 if the SER input is inverted.
SECTION 9-5 Parallel In/Parallel Out Shift Registers

16. Determine all the (2 cutput wavelerms for a TAHC195 4-bit shift register when the inputs are as
shown in Figure 949,

» FIGURE 9-49 i B
7 J
I3 1
SHAD L
CIR
Dy ._
D, 1
oy | B L :’
D, 1) |

17. Solve Problem 16 if the SH/LD input is inverted and the register is initially clear.
18, Use two T4HC 195 shift registers 1o form an 8-bit shifi register. Show the required connections.

SHIFT REGISTERS = 387

CLK

2 FF3

» FIGURE 9-54

4 FIGURE 9-53

SECTION 9-8

SWERS

Shift Register Applications

27, Use TAHCT9S 4-bit shift registers o implement a 16-bit ring counter, Show the connections.,
28. What is the purpose of the power-on LOAD input in Figure 9-337

29, What happens when two keys are pressed simultaneousiy in Figure 0-387

SECTION 9-1

SECTION 9-2

SECTION %-2

5

m

TION 9.4

i

SECTION 9-5

1. A counter has a specified sequence of states. bt a shifi register does not.
2, Sworage and data movement are two functions of a shift register.

Serial In/Serial Out Shift Registers

1. FFD: data input 1o Jq, data input to Ky FF1: O t0 2y, 0o to K\ FF2: @) 0.4, 0y 10 Kyt
FF3: 0y to dy. 0210 Ky
2, Eight clock pulses

Serial In/Parallel Out Shift Registers

1. 0100 after 2 clock pulses
2, Take the serial owtput from the right-most flip-flop for serial out operation.

Parallel In/Serial Out Shift Registers

1. When SHIFT/LOAD is HIGH, the data are shifted right one bit per clock pulse, When SHIFTILOAD
is LOW, the data on the parallel inputs wre loaded into the register.

2. The parallel luad operation is L 50 it is not dependent on the clock.

Parallel In/Parallel Out Shift Registers
1. The data outputs are 1001, 2 (g = | afier one clock pulse

388 = DIGITAL FUNDAMENTALS

SECTION 9-¢ Bidirectional Shift Registers
1. 1111 after the fifth clock pulse

SECTION 9-7 Shift Register Counters

1. Sixtcen staies are in an 8-bit Johnson counter sequence.
2. For a 3-bit Johnson counter: 000, 100, 110, 111, 011, 001, 000

SECTION 9-5 Shift Register Applications

1. 625 scansfsecond 2. Qs(u04(2.0, @y = 011011
3. The diodes provide unidirectional paths for pulling the ROWs LOW and preventing HIGHS on the
ROW lines from being connected to the switch matrix. The resistors pull the COLUMN lines HIGH.

SUPPLEMENTARY PROBLEMS FOR EXAMPLES
81 See Figure 9-55,

= FIGURE 9-55 CLKE _[TL L L L1 Theouputis
Datain {prp M %%&ﬁr&-
g‘: _L“‘,__ S clock palses.
[5 ! : —
Qg L
o HE

9-2 The staie of the register after three additional clock pulses is 000D,
9-3 See Figure 9-56,

» FIGURE 9-56 ok _[TLELALEL s el

— T e
SHIFTEDAD Ly T 0 1 0
&
94 See Figure 9-57.

» FIGURE 9-57 EFT [T] T
oK I]
@ TTT lo_'0_to_'0 sb b 10t
o Ti.,_,—-u To_to 40 o ot
0 ofT e [T jo to o o o te
6Tl 2 o 1o Yo To to fo

SHIFT REGISTERS = 38%

9-5 5See Figure 9-58.

» FIGURE 9-58 [W ey S) NS) Sy S SN -y S j IS S) ST
o] [Il T [T -
T i} L] T LN g
T T 0 I -
T [T 4 0 m

1 [1 T 0 a
LI T T T L.

I_g - 1 1] [

0 e] 1 T

i | LN m__I 1

o |_U 1 [il

96 f=13pus=333kHz

SELF-TEST

1. (b) 2. (e} 3 () 4.() S@ 6@ T &
O (b) 10 (c)

MEMORY AND STORAGE

CHAPTER OBJECTIVES

10-1

Define the basic memory characteristics
Explain what a RAM & and how [t works

Explain the difference between static RAM: (SRAMs) and
dynamic RAM;: (DRAM:)

Explain what a ROM & and how it werks
Explain how a ROM & programmed
Describe the various types of PROM:
Discuss the characteristics of a flash memory

Describe the expansion of ROMs and RAM: to increase word
length and word capacity

Describe the basic onganization of magnetic ditks and magnetic
tapes

Describe the basic operation of magneto-optical disks and opti-
cal disks

u Describe basic methods for memory testing
Develop flowcharts for memory testing

Chapter ¥ covered shift registers, which are a type of storage
device; in fact, a shift register is essentially a small-scale
memory. The memory devices covered in this chapter are
generally used for longer-term storage of larger amounts of
data than registers can provide.

Computers and other types of systems require the perma-
nent or semipermanent storage of large amounts of binary
data. Microprocessor-based systems rely on storage devices
and memories for their operation because of the necesity
for storing programs and for retaining data during p ing

In computer terminclogy, memory usually refers to RAM
and ROM and storage refers to hard disk, floppy disk, and
CD-ROM. In this chapter semiconductor, magnetic, and
optical memories are covered,

BASICS OF SEMICONDUCTOR MEMORY

Memory is the portion of & system for storing binary data in large quantities. Semiconductor
memorics consist of arrays of storage elements that are generally cither latches or capacitors.

After completing this chapter, vou should be able to

= Explain how a memory stores binary data ® Discuss the basic organization of & memory

® Describe the write operation

= Describe the read operation ® Describe the addressing

operation = Explain what RAMs and ROMSs are

MEMORY AND 5TORAGE

Units of Binary Data: Bits, Bytes, Nibbles, and Words

As a rule, memories store data in units that have from one 1o eight bits. The smallest unit of
binary data, as you know, is the bit. In many applications, data are handled in an 8-bit unit
called a byte or in multiples of 8-bit units. The byte can be split into two 4-bit units that are
called nibbles. A complete unit of information is called a word and generally consists of one
or more bytes. Some memories store data in 9-bit groups; a 9-bit group consists of a byte plus
a parity bit,

The Basic Semiconductor Memory Array

Each storage element in a memory can retain either a 1 or a 0 and is called o cell. Memories
are made up of amrays of cells, as illustrated in Figure 10-1 using 64 cells as an example. Each
block in the memory array represents one storage cell, and its location can be identified by
specifying a row and a column,

R T

1234567E 13
ta) & % Karmay 4

It 1 2}
121314

i1 1 4 armay o) B x| armay

CITI

4 FIGURE 10-1

A é4-cell memory array organized in three different ways

The 64-cell array can be organized in several ways based on units of data, Figure 10-1(a)
shows an § » 8 amray, which can be viewed as either a 64-bit memory or an S-byte memory.
Part (b) shows a 16 % 4 array. which is a 16-nibble memory. and part (c) shows a 64 % |
array which is a 64-bit memory, A memory is identified by the number of words it can store
times the word size. For example, a 16k * 8 memory can store 16,384 words of eight bits
cach. The inconsistency here is common in memory terminology. The actual number of words
is always a power of 2. which, i se, is 2'Y = 16,384, However, it is common practice to
state the number to the nearest thousand, in this case, 16k,

Memory Address and Capacity

The tocation of a unit of data in a memory array is called its address. For example, in Figure
10-2(a), the address of a bit in the army is specified by the row and column as shown. In Fig-
ure 10-2(b), the address of a byte is specified only by the row. So, as you can see, the address
depends on how the memory is organized into units of data. Personal computers have random-
access memorics organized in bytes. This means that the smallest group of bits that can be
addressed is eight.

= 391

3% ® DIGITAL FUNDAMENTALS

» FIGURE 10-8 Row Select

Data and Data lines. A data bit is read by taking it off the Data and Data lines. Input data and
output data can share the same lines because write and read operations occur at different
imes.

Basic Static Memory Cell Array The storage cells in a SRAM are organized in rows and
columns, as illustrated in Figure 10-8 for the case of an n X 4 amay. All the cells in a row
share the same Row Select Ime.EnchwtufDnmananmllmsgotocach cell in a given
column and are connected to a single data line that serves as both an input and output
(Data 1/0) through the data input and data output buffers,

e ﬁ-ﬂ-ﬁ&---@
S o e
ool

BN

| Drata InputtOutpar |

Buffess and Coatrol

Da) Daa 0 Dua 10 Daw O
B0 Bir1 Bit2 Ba3

To write a data unit, in this case a nibble, into a given row of cells in the memory array, the
Row Select line is taken to its active state and four data bits are placed on the Data Input lines.
The Write line is then taken 1o its active state, which causes each data bit to be stored in a
selected cell in the associated column. To read a data unit, the Read line is taken to its active
state, which causes the four data bits stored in the selected row to appear on the Data Output
lines.

Basic A h SRAM Organizati

H

An asynchronous SRAM is one in which the operation is not synchronized with a system
clock. To illustrate the general organization of a SRAM, a 32k X 8 bit memory is used.
A logic symbol for this memory is shown in Figure 10-9.

In the READ mode, the eight data bits that are stored in a selected address appear on the
data output lines. In the WRITE mode, the eight data bits that are applied to the data input
lines are stored at a selected address. The data input and data cutput lines (K0 through ¥0y)
are the same lines, During READ, they act as output lines (/; through /;) and during WRITE
they act as input lines (€, through Oy).

Tristate Outputs and Buses Tristate buffers in a memory allow the data lines to act as either
input or output lines and connect the memory to the data bus in a computer. These buffers
have three output states: HIGH (1), LOW (0), and HIGH-Z {open). Tristate outputs are indi-
cated on logic symbols by a small inverted triangle (V), as shown in Figure 10-9, and are used
for compatibility with bus structures such as those found in microprocessor-based systems.

MEMORY AND STORAGE = 3%7

= FIGURE 10-9

RAM 3o

Legic diagram for an asynchronous

32k B SRAM -
A
Ay
A
Ay I (LT RR
A M (TER

Adddress .4" N e
lins | 47 Amm Vs YO
, v 16} B0, | para inputs ()
v v () Ly [and mtputs (6
e vl g,
Ay P [T R
A [LIy
Ay £28)
Ay A1)
B]
(2T T
we [READ]
E 22w T EnaBLE

Physically, a bus is a set of conductive paths that serve to interconnect two or more
functional components of a system or several diverse sysiems. Electrically, a bus is a
collection of spmﬁcd voltage levels andfor current levels and signals that allow the vanous
devices i o thc bus to icate anLI work properly together.

For ple, a is 1o ies and input/output devices by
certain bus structures. An midmss s allows the microprocessor to address the memories, and
the data bus provides for transfer of data b the micro the jes, and the
input/output devices such as i printers. keyboards, and mod The control bus
allows the microp to control data fers and timing for the various components,

Memory Array SRAM chips can be organized in single bits, nibbles (4 bits), bytes (8 bits),
or multiple bytes (16, 24, 32 bits, etc.).

Figure 10-10 shows the organization of a typical 32k X § SRAM. The memory cell armay
is arranged in 256 rows and 128 columns, each with & bits, as shown in part (a). There are
actually 2'* = 32,768 addresses and cach address contains 8 bits. The capacity of this
example memory is 32,768 bytes (typically expressed as 32 kbytes). o

The SRAM in Figure 10-10(b) works us follows. First, the chip select, C5, must be LOW
for the memory to operate, Eight of the fifteen address lines are decoded by the row decoder
to select one of the 256 rows. Seven of the fifteen address lines are decoded by the column
decoder to select one of the 128 8-bit columns.

READ In the READ mode, the write enable input, WE, is HIGH and the output enable, OF,
is LOW, The input tristate buffers are disabled by gate G,, and the column output tristate
buffers are enabled by gate G, Therefore, the eight data bits from the selected address are
routed through the column 1O 1o the data lines (40, though 1Oy, which are acting as data
output lines.

WRITE In the WRITE mode, WE is LOW and OF is HIGH. The input buffers are enabled by
gate Gy, and the output buffers are disabled by gate Gy, Therefore, the eight input data bits on
the data lines are routed through the input data control and the column /O w0 the selected
address and swored.

Read and Write Cycles Figure 10-11 shows typical timing diagrams for a memeory read
cycle and a write cycle, For the read cycle shown in part (a), a valid address code is applied 1o

398 m DIGITAL FUNDAMENTALS

—

. ———
128 columns

in) Memiory array conliguriion

4 FIGURE 10-10

(D]
- ;
Addres |~ Row | 2144
Tines _D=dmdu : ,';?,,x""‘ :
e
-]
Eight |
ottt N
th — T Columa LD Output
: H et Column decoder s
VS FARAAER
Address [Epes
J —
i ‘;—E £
Exglu output buflers

by Memory block deagram

Basic organization of an asynchronous 32k X 8 SRAM

* FIGURE 10-11

:-t——_..___ e 14 __..._.———_,.:
Addness E\ Vahid ackiress %
E.._‘_ ——— i
— ———— iy ———a ———
C5 (Chip select) 1 | /
& -
1 1

OF (Output enable)

- \
Validl daza —

O (Data gut) ~————- /

{a) Read cycle (WE HIGH)

I g

\
Valid pkfress @
)

4 Duta n)

() Write cycle (WE LOW)

MEMORY AND STORAGE = 3%%

the address lines for a specified time interval called the read cyele time, tge. Next, the chip
select (CS) and the output enable (OE) inputs go LOW. One time interval after the OF input
goes LOW, a valid data byte from the selected address appears on the data lines. This time
interval is called the ouiput enable access time, Igg.

Two other access times for the read cyele are the address access time, 1y, measured from
the beginning of a valid address to the appearance of valid data on the data lines and the chip
enable access time, 1y, measured from the HIGH-to-LOW ition of C§ to the app
of valid data on the data lines.

During each read cycle, one unit of data, a byte in this case, is read from the memory.

For the write cycle shown in Figure 10-11(b), a valid address code is applied to the address
lines for a specified time interval called the write cycle time, tye. Next, the chip select (C5)
and the write enable (WE) inputs go LOW. The required time interval from the beginning of a
valid address until the WE input goes LOW is called the address setup time, £, The time
that the WE input must be LOW is the write pulse width, The time that the input WE must
remain LOW after valid data are applicd to the data inputs is designated fyy; the time that the
valid input data must remain on the data lines after the WE input goes HIGH is the data hold
Hime, by

During each write cycle, one unit of data is written into the memory.

Basic Synchronous Burst SRAM Organization

Unlike the asynch SRAM, a h SRAM is synchronized with the system
clock, For ple, in a puter system, the synck SRAM op with the same
clock signal that of the microp so that the microp and memory are
synchronized for faster op

The fundamental concept of the synchronous feature of a SRAM can be shown with
Figure 1012, which is a simplified block diagram of a 32k X 8 memory for purposes of
illustration. The synchronous SRAM is very similar to the asynchronous SRAM in terms of
the memory array, address decoder, and readfwrite and enable inputs, The basic difference is
that the synchronous SRAM uses clocked registers to synchronize all inputs with the system
clock, The address, the read/write input, the chip enable, and the input data are all latched into
their respective registers on an active clock pulse edge. Once this information is laiched, the
memory operation is in sync with the clock.

For the purpose of simplifi a notation for multiple parallel lines or bus lines is intro-
duced in Figure 10-12, as an altemative to drawing each line separaiely. A set of parallel lines
can be indicated by a single heavy line with a slash and the number of separate lines in the
set. For ple, the following notation rey a set of § parallel lines:

B re—

8

The address bits A, through A, are latched into the Address register on the positive edge of
a clock pulse. On the same clock pulse, the stale of the write enable (WE) line and chip select
(CS) are latched into the Write register and the Enable register respectively. These are one-bit
registers or simply flip-flops. Also, on the same clock pulse the input data are latched into the
Dat input register for a Write operation, and data in a selected memory address are Tatched
into the Data output register for a Read operation, as determined by the Data 1/O control based
on inputs from the Write register, Enable register, and the Output enable (QOF).

Two basic types of synchronous SRAM are the flow-through and the pipelined. The flow-
through synchronous SRAM does not have a Data cutput register, so the output data flow
asynchronously to the data O lines through the output buffers. The pipelined synchronous
SRAM has a Data output register, as shown in Figure 10-12, so the output data are synchro-
nously placed on the data 1O lines,

400 ® DIGITAL FUNDAMENTALS

Burst
control

Ag-Aus
t{exsernal
address)

5
aE

WOy-10;
(Data VO)

AFIGURE 10-12

— E— |- Buma 5]
logie - p——
T
| A4 [
=
Aikdress \ | Address | Memary amax
15 repister [4" 13 R ! Rl
' Diata ourpae
4 Tegister is in
' the prpelined
_; aynhmonous
SRAM
1 There is no
S — - s 1= /Dt parput
1'" register in the
3 tlow-throogh
Write —F Daia imput >D¢uoulpul Tych :
N S | _— negister regisher SRAM.
Data 10)
cantrof
Ediobi —— SR
’ Iruffers
L= regioter
+
| f
& n

A basic block diagram of a synchronous burst SRAM

The Burst Feature

As shown in Figure 10-12, synchronous SRAMs normally have an address burst feature,
which allows the memory to read or write at up 1o four locations using a single address, When
an external address is latched in the address register, the two lowest-order address bits, A, and
Ay, are applied to the burst logic. This produces a sequence of four internal addresses by
adding 00, 01, 10, and 11 to the two lowest-order address bits on successive clock pulses. The
sequence always begins with the base address, which is the external address held in the
address register.

Burst Logic The address burst logic in a typical synchronous SRAM consists of a binary
counter and exclusive-OR gates, as shown in Figure 10-13. For 2-bit burst logic, the internal
burst address sequence is formed by the base address bits A=A,y plus the two burst address
bits A} and Aj,

To begin the burst sequence, the counter is in its 00 state and the two lowest-order address
bits are applied to the inputs of the XOR gates. Assuming that A, and A, are both 0, the
internal address sequence in terms of its two lowest-order bits is 00, 01, 10, and 11,

Cache Memory

One of the major applications of SRAMs is in cache memories in computers. Cache memory
is a relatively small, high-speed memory that stores the most recently used instructions or data
from the larger but slower main memory, Cache memory uses dynamic RAM (DRAM), which

MEMORY AND STORAGE = 401

> FIGURE 10-13
Address bunt logic

Binary counter

Burst control __D
— ' 3,
CLK = -

4 intermal burst
R | address
—>
Aa Ay
—
L5B= of
external
widress

is covered next. Typically, SRAM is several times faster than DRAM. Overall, a cache mem-
ory gets stored information to the microprocessor much faster than if only high-capacity
DRAM is used. Cache memory is basically a cost-effective method of improving system per-
formance without having to resort to the expense of making all of the memory faster,

The concept of cache memory is based on the idea that computer programs tend to get
instructions or data from one area of main memory before moving to another area. Basically,
the cache controller “guesses™ which area of the slow dynamic memory the CPU (central-
processing unit) will need next and moves it to the cache memory so0 that it is ready when
needed. IT the cache controller guesses right, the data are immediately available to the micro-
processor, If the cache controller guesses wrong, the CPU must go to the main memory and
wait much longer for the comect instructions or data. Fortunately, the cache controller is right
most of the time,

Cache Analogy There are many analogies that can be used in describing a cache memory,
but comparing it to a home refrigerator is perhaps the most effective. A home refrigerator can
be thought of as a “cache” for certain food items while the supermarket is the main memory
where all foods are kept. Each time you want something 1o eat or drink, you can go to the
refrigerator (cache) first to see if the item you want is there. If it is there, you save a lot of
time. If it is not there, then you have to spend extra time to get it from the supermarket {main
memory).

L1 and L2 Caches A first-level cache (L1 cache) is vsually integrated into the processor
chip and has a very limited storage capacity. L1 cache is also known as primary cache. A
second-level cache (L2 cache) is a separate memory chip or set of chips external to the
processor and usually has a larger storage capacity than an L1 cache. L2 cache is also known
as secondary cache, Some systems may have higher-level caches (L3, L4, etc.), but L1 and L2
are the most common, Also, some systems use a disk cache to enhance the performance of the
hard disk because DRAM, although much slower than SRAM, is much faster than the hard
disk drive. Figure 10-14 illustrates L1 and L2 cache memories in a computer system.

Dynamic RAMs (DRAMs) Storage Cells

Dynamic memory cells store a data bit in a small capacitor rather than in a latch, The advan-
tage of this type of cell is that it is very simple, thus allowing very large memory arrays to be
constructed on a chip at a lower cost per bit. The disadvantage is that the storage capacitor
cannot hold its charge over an extended period of time and will lose the stored data bit unless
its charge is refreshed periodically. To refresh requires additional memory circuitry and com-
plicates the operation of the DRAM. Figure 10-15 shows a typical DRAM cell consisting of a
single MOS transistor (MOSFET) and a capacitor.

406 ® DIGITAL FUNDAMENTALS

Doy

A FIGURE 10-20

e
Column 2
address

St

_vatiah
Y dota

Fast page mode timing for a read operation

In distributed refresh, each row is refreshed at intervals interspersed between normal read
or write cycles, For example, the memory in Figure 10-17 has 1024 rows. As an example, for
an 8 ms refresh period, each row must be refreshed every 8 ms/1024 = 7.8 us when
distributed refresh is used.

__The two types of refresh operations are RAS-only refresh and CAS before RAS refresh.
RAS only refresh consists of a RAS transition to the LOW (active) state, which laiches the
address of the row to be refreshed while CAS remains HIGH (inactive) throughout the cycle.
An external counter is used to pm:de the row addresses for this type of operation.

The CAS before RAS refresh is initiated by CAS going LOW before RAS goes LOW. This
sequence activates an internal refresh counter that generates the row address 1o be refreshed.
This address is switched by the data selector into the row decoder.

Types of DRAMs

Now that you have leamed the basic concept of a DRAM, let us briefly look at the major
types. These are the Fast Page Mode (FPM) DRAM, the Extended Data Outpur (EDO)
DRAM, the Burst Extended Data Ouiput (BEDO) DRAM, and the Synchronous (5) DRAM.

FPM DRAM Fast page mode operation was described earlier. This type of DRAM
traditionally has been the most common and has been the type used in computers until the
development of the EDO DRAM. Recall that a page in memory is all of the column addresses
contained within one row address.

As you have scen, the basic idea of the FPM DRAM is based on the probability that the
next several memory addresses 1o be accessed are in the same row (on the same page).
Fortunately, this happens a large percentage of the time. FPM saves time over pure random
accessing because in FPM the row address is specified only once for access to several
successive column addresses whereas for pure random accessing, a row address is specified
for each column address. o

Recall that in a fast page mode read operation, the CAS signal has to wait until the valid
data from a given address are accepted (latched) by the external system (CPU) before it can
£0 to its nonasserted state. When CAS goes to its nonasserted state, the data outputs are
disabled. This means that the next column address cannot occur until after the data from the
current column address are transferred to the CPU. This limits the rate at which the columns
within a page can be addressed.

EDO DRAM The Extended Data Output DRAM, sometimes called hyper page mode
DRAM, is very similar to the FPM DRAM. The key difference is that the CAS signal in the
EDO DRAM does not disable the output data when it goes to its nonasserted state because

408 = DIGITAL FUNDAMENTALS

* FIGURE 10-21

The ROM family

= FIGURE 10-22

Read-Only
Memory
(ROM)
' |
e | Programmable Erusable Ultravialet me!lr
e Erasable
HE T Hetnd UV EPROM FROM
: : ') i it (EEPROM)

by exposure to ultraviolet light over a period of several minutes. The electrically erasable
PROM (EEPROM or EPROM] can be erased in a few milliseconds.

- The Mask ROM

The mask ROM is usually referred to simply as a ROM. It is permanently programimed during

the manufacturing process to provide widely used standard functions, such as popular conver-

sions, or to provide user-specified functions. Once the memory is programmed, it cannot be

changed. Most 1C ROMs utilize the presence or absence of a transistor connection at a
1 Junction to reg aloral.

Figure 10-22 shows MOS ROM cells. The presence of a connection from a row line 1o
the gate of a transistor represents a 1 at that location because when the row line is taken
HIGH, all i with a gate ion o that row line turn on and connect the HIGH
(1) to the associated column lines. Al row/column junctions where there are no gate con-
nections, the column lines remain LOW (0) when the row is addressed.

ROM cells

Column Column
H i
Row -~ L SHET T e S
+Voo Voo
gio

i
T,

]
I

Storinga | Staring a 0

‘A Simple ROM

To illustrate the ROM concept, Figure 10-23 shows a small, simplified ROM array. The
unshaded squares represent stored 1s, and the shaded squares represent stored 0s. The basic
read operation is as follows: When a binary address code is applied to the address input lines,
the corresponding row line goes HIGH. This HIGH is connected 1o the column lines through the
transistors at each junction (cell) where a | is stored. At each cell where a (is stored, the column
line stays LOW because of the terminating resistor, The column lines form the data output. The
eight data bits stored in the selected row appear on the output lines,

As you can see, the example ROM in Figure 10-23 is organized into 16 addresses, each of
which stores 8 data bits. Thus, it is a 16 X% 8 (16-by-8) ROM, and its total capacity is 128 bits
or 16 bytes. ROMs can be used as look-up tables (LUTS) for code conversions and logic func-
tion generation. LUTS are discussed later in the chapter.

MEMORY AND STORAGE = 409

» FIGURE 10-23
A 16 % B-bit ROM array

Address
decoder
0
1
1
Address | 32— 7
input {
lines | 4—
Ls—
14
15
Terminating
FEsisIOn.

[hata outpun lines.

| EXAMPLE 10-1
Show a basic ROM, similar 1o the one in Figure 10-23, programmed for a 4-bit binary-to-

Gray conversion.

Solution Review Chapter 2 for the Gray code. Table 10-1 is developed for use in programming the

ROM.
TABLE 10-1
BINARY i GRAY
3 B, 8y § el G; ' Gy
0 0 0 i} 0 (1} 0 (1]
(1] 0 it}) {1} (1} 0 1
0 0 1 0 0 0 i 1
L] 0 1 I 1] 0 I L
0 I 0 1] 0 1 L} 0
a I 0 1 [t} 1 1 1
0 1 1 1] L] 1 o 1
Lt I 1 1 o 1 {1 n
1 0 0 0 i 1 0 0
1 (1]] 1 1 1] ¥
1 (1] I 1] 1 1 1 1
1 (1] 1 1 | 1 1]
1 1 (}} 0 1 0 1 0
1 1 0 af 1 0 1 1
1 1 1 [i] 1] 0 1
1 1 1 1 L (1] 0 (1]

410 = DIGITAL FUNDAMENTALS

‘The resulting 16 X 4 ROM array is shown in Figure 10-24, You can see that a binary code
on the address input lines produces the corresponding Gray code on the output lines -
(columns). For example, when the binary number 0110 is applied to the address input lines,
address 6, which stares the Gray'code 0101, is selected.

* FIGURE 10-24

Bipary code
applied 1o
address
impat lines

Giray code output

Supplementary Problem Using Figure 10-24, determine the Gray code output when a binary code of 1011 is
applied to the address input lines.

e

| ROM Organizati

MEMORY AND STORAGE

Most IC ROMs have a2 more complex internal organization than that in the basic simplified
example just presented. To illustrate how an IC ROM is structured, let us use a 1024-bit
device with a 256 X 4 organization. The logic symbel is shown in Figure 10-25. When any
one of 256 binary codes (eight bits) is applied to the address lines, four data bits appear on the
outputs if the chip enable inputs are LOW. (There are eight address lines because 2" = 256.)
The A f; designator means that the 8-bit address code selects address 0 through 255.

» FIGURE 10-25
A 256 > 4 ROM logie symbal

Adddress
inpat

limes.

ROM 25604

o

—

— o,

—

o
&l
|

— o |

7
—ct|
EN
—q

Data
o
lines

Although the 256 * 4 organization of this device implies that there are 256 rows and
4 columns in the memory array, this is not actually the case. The memory cell array is actually
@ 32 % 32 matrix (32 rows and 32 columns), as shown in the block diagram in Figure 10-26.

» FIGURE 10-26 =
A typical 1024-bit ROM decoder |}
1
i
A —] ! 1
Row “:'] 1 axar
address 'l-' R Memaory amay
..|. lines
Ay n
i
i
i
e J' As ——y Colamn decoders
‘I:_"" Ay (Four 1-of-8 decoders)
3 and 10 circuits

o[£

o

Crutput
baffers

ik o Oy

= 411

MEMORY AND STORAGE

PROMs

A PROM uses some type of fusing process (o store bits, in which a memory fink is bumed
open or left intact to represent a 0 or a 1. The fusing process is irmeversible; once a PROM is
prog: d, it cannot be ch d.

Figure 10-2¥ illustrates a MOS PROM amay with fusible links. The lusible links are
manufactured into the PROM between the source of each cell’s transistor and its column line.
In the programming process, a sufficient current is injected through the fusible link 10 bum it
open to create a stored 0. The link is lefi intact for a stored 1. In Figure 10-28, afl drains are
commonly connected to Vi,

» FIGURE 10-28

MOS PROM array with fusible links (h_.—o%» hE%—O h
hf el

T4

T e
2]

Colamas

Three basic fuse technologies used in PROMs are metal links, silicon links, and pn junc-
tions. A brief description of each of these are as follows:

1. Metal Jinks are made of a material such as nichrome, Each bit in the memory amay is
represented by a separate link. During programming, the link is either “blown” open or
left intact. This is done basically by first addressing a given cell and then forcing a suf-
ficient amount of current through the link to cause it to open,

2. Silicon links are formed by namrow. notched strips of polycrystalline silicon. Program-
ming of these fuses requires melting of the links by passing a sufficient amount of cur-
rent through them. This amount of current causes a high temperature at the fuse loca-
tion that oxidizes the silicon and forms an insulation around the now-open link.

w

. Shoned junction, or avalanche-induced migrati hnalogy consists basically of two
it junctions arranged back-to-back. During programming. one of the diode junctions
is avalanched, and the resulting voltage and heat cause aluminum jons w migrate and
short the junction. The remaining junction is then used as a forward-binsed diode to
represent a data bit

" 413

414 m

DIGITAL FUNDAMENTALS

PROM Programming
A PROM is 1l d by i ing it into a special instrument called a PROM

programmer, Basically, the programming is accomplished as shown by the simplified setup in
Figure 10-29. An address is selected by the electronic switches on the address lines, and then
a pulse is applied to those output lines corresponding to bit locations where Os are to be stored
(the PROM starts out with all 1s). These pulses blow the fusible links, thus creating the
desired bit pattern. The next address is then selected and the process is repeated. This
sequence is actually done ically by a soft Iriven PROM p

» FIGURE 10-2%

Electronic switches

Simplified concept of FROM
programming sctup PROM
5 @ 0 0y
Ba0—— o
Sy -,
© ! A . Program
1 T -
L ! H generator
—oe0 m | _g™o— T
| a, =
| — En
EPROM;s

An EPROM is an erasable PROM. Unlike an ordinary PROM, an EPROM can be repro-
grammed if an existing program in the memory array is erased first.

An EPROM uses an NMOSFET array with an isolated-gate stiucture. The isolated transis-
tor gate has no electrical connections and can store an electrical charge for indefinite periods
of time. The data bits in this type of array are represented by the presence or absence of a
stored gate charge, Erasure of a data bil is a process that removes the gate charge.

Two basic types of erasable PROMs are the ultraviolet erasable PROM (UV EPROM) and
the electrically erasuble PROM (EEPROM).

UV EPROM:s You can recognize the UV EPROM device by the transparent quartz lid on the
package, as shown in Figure 10-30. The isolated gate in the FET of an ultraviolet EPROM is
“Moating”™ within an oxide insulating material. The progs ing process causes electrons o
he remmed fmm |he I'Inalmg gate. Erssure is done by exposure of the memory array chip o

i diation through the quantz window on top of the package. The pos-

lllve charge stored on the gate is neutralized after several minutes o an hour of exposure time.

» FIGURE 10-30
Ultraviolet erasable PROM package

MEMORY AND STORAGE = 417

~ FIGURE 10-33
The storage cell in a flash memory

Drain

' symbol
Suirce e
| 56 ol
= A
G0
Many clecrrons = more charpe = stoned 0. Few clectinns = fess change = sioned 1.

Basic Flash Memory Operation

There are three major operations in a Mash memory: the programming operation, the read

operation, and the erase operation.

Programming Initially, all ocﬂa are at the | state because charge was removed from each
cell in a previous erase of The ion adds electrons (charge) 1o the
floating gate of those cells that are to store a 0. No. chuq_:c is added to those cells that are w
store a 1. Application of a sufficient positive voltage to the conrol gate with respect o the
source during programming attracts electrons to the floating gate, as indicated in
Figure 10-234. Once programmed, a cell can retain the charge for up to 100 years without any
external power,

» FIGURE 10-34 o o
Simplified illustration of storing a 0
ara 1 during the programming

operation [&]
o e
<]
=]
u
T stowe: a 0, a sulficient positive voltage is Tosaoee o 1, 0o charge is adided snd the cell i
applied o the conmrol gane witl respect 1o the left in the erased condeiion

sonmoe o ackl charge b the {loating gause during
progranming.

Read During a read operation, a positive voltage is applied to the control gate. The amount
of charge present on the floating gate of a cell determines whether or not the voltage applied
o the control gate will tum on the transistor. If a 1 is stored, the control gate voltage is suffi-
cient to tum the transistor on. If a 0 is stored. the transistor will pot tum on because the con-
irol gate voltage is not sufficient to overcome the negative charge stored in the floating gate.
Think of the charge on the floating gate as a voltage source that opposes the voltage applied to
the control gate during a read operation. So, the floating gate charge associated with a stored 0
prevents the control gate voltage from reaching the wm-on threshold, whereas the small or
zero charge associated with a stored 1 allows the control gate voltage to exceed the mum-on
threshold.

When the transistor wms on, there is current from the drain o the source of the cell transis-
tor, The presence of this cumment is sensed to indicate a 1, and the absence of this current is
sensed 1o indicate a1, This basic idea is illustrated in Figure 10-35.

411 ® DIGITAL FUNDAMENTALS

* FIGURE 10-35 +Vp +¥
The raad operation of a fash cell in .
an aray
‘Vm04|
ov v
‘When a 0 is read, the transistor remains off ‘When a | is read, the transistor tams on because
bbecause the charge on the floating gate prevents the absence of charge on the floating gate
the read voltage from exceeding the wm-on allows the read voltage 1o exceed the tem-on
threshobd. threshold.

> FIGURE 19-34

Erase During an erase operation, charge is removed from all the memory cells. A sufficient
positive voltage is applied to the transistor source with respect to the control gate. This is
opposite in polarity to that used in programming. This voltage attracts electrons from the
floating gate and depletes it of charge, as illustrated in Figure 10-36. A flash memory is
always erased prior to being reprogrammed.

Simplified illustration of removing
charge from a cell during erase
%
(-]
(-]
*+Vease
To erase a cell. a sufficient positive voltage is
mmm from the floating gate
dunng the efase operation.
FBasic Flash Memory Array

A simplified array of flash memory cells is shown in Figure 10-37. Only one row line is
accessed at a time. When a cell in a given bit line tumns on (stored 1) during a read operation,
there is current through the bit line, which produces a voltage drop across the active load. This
voltage drop is compared to a reference voltage with a comparator circuit and an output level
indicating a 1 is produced. If a 0 is stored, then there is no current or a little current in the bit
line and an opposite level is produced on the output.

‘iComparison of Flash Memories with Other Memories

Let us compare flash memories with other types of memories with which you are already
familiar.

Fash vs. ROM EPROM, and EEPROM Read-only memories are high-density, nonvolatile
devices. F once d the of a ROM can never be altered. Also, the

initial p ing is a ti ing and costly process.

MEMORY AND STORAGE = 419

Bit ling 01 Wit line
.

nnuumuo—o—”q— -|}l:

Raw select | 04§ —LE

]
} (=
kuw:-cl«lno—b—”l:l L I‘L1
S S
Column select 1 Cobumn sehect m

4 FIGURE 10-37

Bauic flash memory array

Although the EPROM is a high-density, nonvolatile memory, it can be erased only by
removing it from the system and using ultraviolet light. It can be reprogrammed only with
specialized equipment.

The EEFROM has a more complex cell structure than either the ROM or EPROM and so
the density is not as high, although it can be reprogrammed without being removed from the
system. Because of its lower density, the cost/bit is higher than ROMs or EPROMs.

A flash memory can be reprogrammed easily in the system because it is essentially a
READ/WRITE device. The density of a flash memory compares with the ROM and EPROM
because both have single transistor cells. A flash memory (like 2 ROM, EPROM, or EEP-
ROM) is nonvolatile, which allows data to be stored indefinitely with power off,

Flash vs. SRAM As you have learned, static random-access memories are volatile
READ/WRITE devices. A SRAM requires constant power to retain the stored data. In many
applications, a hattery backup is used to prevent data loss if the main power source is tumed
off. However, since battery failure is always a possibility, indefinite retention of the stored
data in a SRAM cannot be guaranteed. Because the memory cell in a SRAM is basically o
flip-flop consisting of several transistors, the density is relatively low.

A flash memory is also a READ/WRITE memory, but unlike the SRAM it is nonvolatile.
Also, a flash memory has a much higher density than a SRAM.

MEMORY AND STORAGE

65546 xE
Address. x ROM Adddress - ROM 1
bos 1OBE o Sima . by 16588
kit 4 hits
Control Control
bus bus
Data
B bits
bus
Addreis : RoM . ROM 2
= 16 bats kes36 4 - 16 bits
dbits -y 4 bits
Control
bus
i) Two separate 65,536 x 4 ROMs by One 65,536 % 8 ROM from rwo 65,536 = 4 ROMs
A FIGURE 10-38 o B i
iusation of FrPen
address bus is I d to both ies so that the bination memory still

has the same number of addresses (2'® = 65,536) as each individual memory. The 4-bit data
buses from the two memories are combined to form an 8-bit data bus. Now, when an address
is selected, eight bits are produced on the data bus—four from each memory.

The following example shows the details of 65,536 X 4 10 65,536 % & expansion.

= 421

I EXAMPLE 10-2
Expand the 65,536 > 4 ROM (64k x 4) in Figure 10-39 to form a 64k > 8 ROM. Note

that “64k™ is the accepted shorthand for 65,536. Why not “65k™7 Maybe, it is because 64 is

also a power-of-two,

* FIGURE 10-3%
A b4k % 4 ROM

—}

—o

S—7

Solution Two bdk > 4 ROMs are connected as shown in Figure 1040, Notice that a specific

address is accessed in ROM 1 and ROM 2 at the same time. The four bits from a selected
address in ROM 1 and the four bits from the commesponding address in ROM 2 go out in
parallel to form an 8-bit word on the data bus. Also, notice that a LOW on the chip enable

line, E, which forms a simple control bus, enables both memories,

422 = DIGITAL FUNDAMENTALS

|
| = FIGURE 10-40
i
i

Address o
bus A

Contrd &
bus

g

Supplementary Problem mmwm{ﬁiqmmumwxsm

[IEKAMPI.! 10-3 B ; —_—
i Un&unmﬂeshwm-zwhnnaﬂkxlsmu

! Solution hﬂ;mmmﬂlmﬁmﬂ,ﬂﬁlmmmmxdwﬂtﬂ
| wkﬁmmﬂ:mnmhﬁm 10-41. !

A FIGURE 10-41

Supplementary Problem How many 64k X | ROMs would be required to implement the memory shown in .
Figure 10-417

MEMORY AND STORAGE = 423

A ROM has only data outputs, but a RAM has both data inputs and data outputs. For word-
length expansion in a RAM (SRAM or DRAM), the data inputs and data outputs form the
data bus. Because the same lines are used for data input and data output, tristate buffers are
required. Most RAMSs provide internal ristate circuitry. Figure 1042 illustrates RAM expan-
sion to increase the data word length.

RAM 2
xn

HE

» FIGURE 10-42 RAM 2 % 2
Iustration of word-length expansion Mm.:': m bits
RAM1
 bits xn i bits
v
Data .
infout | mbits
Controd
bas
r
20 bits {
It bus

IEMMPLE 1
Use IM x 4 SRAMs to create a IM X 8 SRAM.

1 lls.

Solution Two IM * 4 SRAMSs are connected as shown in the simplified block diagram of

Figure 10-43.

o]SRA:\! !

-

4 FIGURE 10-43

Supplementary Problem Use 1M * 8 SRAMs to create a IM 16 SRAM.

426 ® DIGITAL FUNDAMENTALS

I SECTION 10-6
REVIEW

" SPECIAL TYPES OF MEMORIES

SIMMs and DIMMs plug into sockets on a system board such as those :l]uatm‘.cd in
Figure 1047 where several sockets are gencrally ilable for memory exy The
sockets for SIMMs and DIMMs, of course, are different and not interchangeable.

= FIGURE 10-47

A SIMM/DIMM inserted into a
socket on a system board

o

How many 16k > 1 RAMs are required to achieve a memory with a word capacity of 16k

and a word length of eight bits?

2. To expand the 16k * 8 memory in question 1 to a 32k X 8 organization, how many
more 16k = 1 RAM; are required?

3. What does SIMM stand for?

4. What does DIMM stand for?

In this section, the first in-first out (FIFOJ MEmory, lb: Im in=first out (LIFO) memaory, the
memory stack, and the charge-coupled device memory are covered.

After completing this section, you should be able to

® Describe a FIFO memory ® Describe a LIFO memory ® Discuss memory stacks
= Explain how to use a portion of RAM as & memory stack = Describe a basic CCD
memory

First In-First Out (FIFO) Memories

This type of memory is formed by an arrangement of shift registers. The term FIFO refers to
the basic operation of this type of memory, in which the first data bit written into the memory
is the first to be rrad out,

One i e b ac ional shift register and a FIFO register is illus-
trated in Fagun: 10-48. In a conventional register, a data bit moves through the register only as
new data bits are entered; in a FIFO register, a data bit immediately goes through the register
to the right-most bit location that is empty.

MEMORY AND STORAGE = 427

= FIGURE 10-428 Conventional shafl regaster FIFQ shift register
Ipt X X X X Outpat pst — — — — Oupm
i (R S T R —— [- - = 0
1 [T S R —— 1 I | —
1 1 1 W X — 1 _ 1 1 o —_—
0 0 1 1 0 — o [1 0 —
X = unknoan data bits. — = empty pasitions.
n & conpestional shaft segister, das sty %0 the left unn) 0 o FIFLH skl regiazes, ddata “1a1l” through (g right)

“fiorued” (brough by hlitional ifata.

Figure 1049 is a block diagram of a FIFO serial memory. This particular memory has four
serial 64-bit data registers and a 64-bit control register {marker register), When data are
entered by a shift-in pulse, they move automatically under control of the marker register to the
empty location closest 10 the output. Data cannot advance into occupied positions, However,
when a data bit s shifted out by a shift-out pulse, the data bits remaining in the registers auto-
matically move to the next position toward the output. In an asynchronous FIFO, data are
shifted out independent of data entry, with the use of two separate clocks.

+ FIGURE 10

(Y array stares

i chatit womds

e
4Bt thall regier — o)
o [LB e}l O
buifers

— - bubfer f—e O [tput
gy
it shift regster

Data | 7,
tput | 43
W

[

. Conuial Tir

v i1H) -—e] Input
comtrol |
151 —= Jogie

—= g ey (08

P Sl vt (501

FIFO Applications

One important application area for the FIFO register is the case in which two systems of dif-
fering data rates must communicate. Data can be enterew .. 2 FIFO register at one rate and
tuken out at another rate, Figure 10-50 illustrates bow a FI0 register might be used in these
situations.

428 w DIGITA. FUNDAMENTALS

= FIGURE 10-50

= FIGURE 10-51

Irregular-rase data FIFO register Constant.rate data

{a) bregular selemetry data can be stored and retransmitied 31 constant rate.

Lower-rase data FIFO register - Higher-rate data

ih) Data input a1 & slow keyboard rate can be stored and then at a higher rate for p

Constant-rate data FIFQ register Buna data

|

ie) Data inpul al a comstant fate can be stoeed end then oulpel in bunits.

Burst data

3
E

Constant-rate data

{d) Data in bursts can be stored and reformatied into a constant-rae owtput.

Last In-First Out (LIFO) Memories

The LIFO (last in—first out) memory is found in applications involving microprocessors and
other computing systems. It allows data to be stored and then recalled in reverse order; that is,
the last data byte to be stored is the first data byte 1o be retrieved.

Register Stacks A LIFO memory is commonly referred to as a push-down stack. In some
systems, it is implemented with a group of registers as shown in Figure 10-51. A stack can
consist of any number of registers, but the register at the top is called the rop-of-stack.

Register stack.

To illustrate the principle. a byte of data is loaded in parallel onto the top of the stack. Each
successive byte pushes the previous one down into the next register, This process is illustrated
in Figure 10-52. Notice that the new data byte is always loaded into the top register and the
previously stored bytes are pushed deeper into the stack. The name push-down stack comes
from this characteristic.

Data bytes are retrieved in the reverse order. The last byte entered is always at the wp of
ihe stack, so when it is pulled from the stack, the other bytes pop up into the next higher loca-
tions. This process is illustrated in Figure 10-53.

MEMORY AND 5TORAGE

Top-of-ctach ojofrfijo
Suack poinver ningoiijo

Stack pointer
[

{a) The stack pointer is =t FFEC before the data wond ks 1) The stack peinter is incremented by tao and the lust
copied (popped) from the stack. data word stored is copicd (popped) from the stack.

A FIGURE 10-56

Top-

CCD Memories

The CCD (charge-coupled device) memory stores data as charges on capacitors. Unlike the
dynamic RAM. however, the storage cell does not include a transistor. High density is the
main advamage of CCDs.

The CCD memory consists of long rows of semiconductor capacitors, called channels.
Data are entered into a channel serially by depositing a small charge for a 0 and a large charge
for a 1 on the capacitors. These charge packets are then shified along the channel by clock -
signals as more data are entered.

As with the DRAM, the charges must be refreshed periodically. This process is done by
shifting the charge packets serially through a refresh circuit. Figure 10-57 shows the basic
concept of a CCD channel. Because data are shified serially through the channels, the CCD
memory has a relatively long access time. CCD armays are used in some modern cameras (o
capture video images in the form of light-induced charge.

» FIGURE 10-57 1 1 1
A CCD (charge-coupled device) g T T e o . e T
mavernent — L
Substrate
SECTION 1

1. What is a FIFO memory?

2. What is a LIFO memory?

3. Explain the PUSH operation in a memory stack.
4. Explain the POP operation in a memory stack.
5. What does the term CCD stand for?

REVIEW

w431

432 =

DIGITAL FUNDAMENTALS

1078 MAGNETIC AND OPTICAL STORAGE

= FIGURE 10-58

In this section, you will be introduced 1o the basics of magnetic disks. magnetic tape,
magneto- optical disks, and optical disks. These storage media are very important,

larly in P I i where they are used for mass nonvolatile storage of
Llal.: and programs,

After completing this section. you should be able to

= Describe a magnetic hard disk = Describe a floppy disk ® Discuss removable hard
disks = Explain the principle of magneto-optical disks = Discuss the CD-ROM. CD-R,
and CD-RW disks ® Describe the WORM » Discuss the DVD-ROM

Magnetic Storage

Magnetic Hard Disks Computers use hard disks as the internal mass storage media. Hard
disks are rigid “plaiters™ made of aluminum alloy or a mixture of glass and ceramic covered
with a magnetic coating. Hard disk drives mainly come in two diameter sizes, 5.25 in. and
3.5 in. although 2.5 in. and 1.75 in. are also available. A hard disk drive is bermetically sealed
1o keep the disks dust-free.

Typically, two or more platters are stacked on top of each other on a commeon shaft or spin-
dle that turns the assembly at several thousand rpm, There is a separation between each disk 1o
allow for a magnetic read/write head that is mounted on the end of an actuator arm, as shown
in Figure 10-58. There is a read/write head for both sides of cach disk since data are recorded
on both sides of the disk surface. The drive actuator arm synchronizes all the read/write heads
to keep them in perfect alignment as they “fly” across the disk surface with a separation of
only a fraction of a millimetre from the disk. A small dust particle could cause a head to
“erash,” causing damage to the disk surface.

A hard disk drive

Spindle_

Platers __

Basic Read/Write Head Principles The hard drive is a random-access device because it can
retrieve stored data anywhere on the disk in any order. A simplified diagram of the magnetic
surface read/write operation is shown in Figure 10-59. The direction or polarization of the
magnetic domains on the disk surface is d by the ion of the magnetic Mux lines
ln'ngrumc field) produced by the write head according to the direction of a current pulse in the

. This magnetic flux izes a small spot on the disk surface in the direction of the
magnmc field. A magnetized spot of one polarity represents a binary 1, and one of the oppo-
site polarity represents a binary (. Once a spot on the disk surface is magnetized, it remains
until written over with an opposite magnetic field.

434 = DIGITAL FUNDAMENTALS

Hard Disk Performance Several basic | the of a giver
hard disk drive. A seek operation is the movement of the read/write head to the desired track.
The seek time is the average time for this operation to I:c perronned Typically, hard disk
drives have an average seek time of several milli ds, dey £ on the particular drive,

The latency period is the time it takes for the desired sector to spin und:r the head once
the head is positioned over the desired track. A worst case is when the desired sector is just
past the head position and spinning away from it. The sector must rotate almost a full revolu-
tion back to the head position. Average latency period assumes that the disk must make half of
a revolution, Obviously, the latency period depends on the ional speed of the
disk. Disk rotation speeds are different for different disk drives but typically are 3600 rpm,
4500 rpm, 5400 rpm, and 7200 rpm. Some disk drives rotate at 10,033 rpm and have an
average latency period of less than 3 ms.

The sum of the average seek time and the average latency period is the access fime for the
disk drive.

Floppy Disks The floppy disk is an older technology and derives its name because it is made
of a flexible polyester marerial with a magnetic coating on both sides. The early floppy disks
were 5.25 inches in diameter and were packaged in a semiflexible jacket. Current floppy disks
or diskettes are 3.5 inches in diameter and are encased in a rigid plastic jacket. as shown in
Figure 10-61. A spring-loaded shutter covers the access window and remains closed until the
disk is inserted into a disk drive. A metal hub has one hole to centre the disk and another for

g it within the p ive jacket. Obvi . oppy disks are removable disks, whereas
hani d:sks are nol, Floppy disks are formatted into tracks and sectors similar to hard disks
except for the number of tracks and sectors. The high-density 1.44 Mbyte floppies have
B0 tracks per side with 18 sectors. With the advent of other types of removable disks such as
Zip, the floppy has serious competition, but its low cost may continue to make the floppy disk
competitive for smaller storage applications,

= FIGURE 10-61 Access window
The 3.5 inch floppy disk (diskette) Spring-boaded door

Write-prolect 1ab ©

Zip™ The Zip drive is one type of removable magnetic storage device that has replaced the
limited-capacity floppy. Like the floppy disk, the Zip disk cartridge is a flexible disk housed
in a rigid case about the same size as that of the Moppy disk but thicker. The typical Zip drive
is much faster than the Noppy drive because it has a 3000 rpm spin rate compared to the
floppy’s 300 rpm. The Zip drive has a storage capacity of 100 Mbytes, about 69 times more
than the 1.44 Mbyte floppy. A typical external Zip drive and cartridge are shown in
Figure 10-62.

Jar™ Another type of removable magnetic storage device is the Jaz drive, which is similar
10 a hard disk drive except that two platters are housed in a removable cantridge protected by a
dust-proof shutter. The Jaz cartridges are available with storage capacities of 1 or 2 Gbytes.
A Jaz drive and cartridge are shown in Figure 10-63.

436 = DIGITAL FUNDAMENTALS

* FIGURE 10-64 Hend head i 2
fea] wsembly
QIC tape
—Track |
Write head Writchead s
0.25 in. (RS ! — (00
Muagnetic tape Track

{maving post hesit)

DLT is an abbreviation for digital linear tape. DLT is a half-inch wide tape, which is 60%
wider than 8 mm and, of course, twice as wide as standard QIC. Basically, DLT differs in the
way the tape-drive mechanism works to minimize tape wear compared to other systems. DLT
offers the highest storage capacity of all the tape formats with capacities ranging up to

35 Ghytes.

Magneto-Optical Storage
As the name implies, magneto-optical (MO) storage devices use a combination of magnetic
and optical (laser) technologies. A mag ptical disk is fq d into tracks and sectors

similar to magnetic disks.

The basic difference between a purely magnetic disk and an MO dlslc is that the mlgnellc
coating used on the MO disk requires heat to alter the magr 1 T the
MO is extremely stable at ambient temperature, making data unchangcahl: To write a data
bit, a high-power laser beam is focused on a tiny spot on the disk. and the temperature of that
tiny spot is raised above a temperature level called the Curie point (about 200°C). Once
heated, the magnetic particles at that spot can easily have their direction (polarization)

hanged by a magnetic field g d by the write head. Information is read from the disk
with a less-powerful laser than used for writing, making use of the Kerr effect where the
polarity of the reflected laser light is aliered & ling on the ori ion of the magnetic par-
ticles. Spots of one polarity represent (s and -ipcl.s of Il!c opposite polarity represent 1s. B.um:
MO operation is shown in Figure 10-65, which rep a small 1 area
of a disk.

Optical Storage

CD-ROM The basic Compact Disk-Read-Only Memory is a 120 mm diameter disk with a
sandwich of three coatings: a polycarbonate plastic on the bottom, a thin aluminum sheet for
reflectivity, and a top coating of lacquer for protection. The CD-ROM disk is formatted in a
single spiral track with sequential 2 kbyte sectors and has a capacity of 680 Mbytes, Data is
prerecorded at the factory in the form of minute indentations called pirs and the flat area sur-
rounding the pits called fands. The pits are stamped into the plastic layer and cannot
be erused.

A CD player reads data from the spiral track with a low-power infrared laser, as illustrated
in Figure 10-66. The data are in the form of pits and lands as shown. Laser light reflected
from a pit is 1807 out-of-phase with the light reflected from the lands. As the disk rotates, the
narrow laser beam strikes the series of pits and lands of varying lengths, and a photodiode
detects the difference in the reflected light. The result is a series of 1s and Os corresponding to
the configuration of pits and lands along the track,

WORM Write Once/Read Many (WORM) is a type of optical storage that can be written
onto one time after which the data cannot be erased but can be read many times. To write data,
a low-power laser is used to burn microscopic pits on the disk surface. 1s and Os are repre-
sented by the burned and nonburned areas.

Disk Substrate
e L UL L P LELE S

o =

~— Reflected beam

) Unrecorded disk

i) Reading: A bow-power lascer beam reflects off of the reversed-
polarity magnetic panticles and its polarization shifts. If the panicles
are pot reversed, the polarization of the reflectad beam is unchanged.

A FIGURE 10-65

MEMORY AND STORAGE = 437

by ebectromagnenic field. =

h) Writing: A high-power laser beam heats the spot, causing the
magnetic particles 10 align with the electromagmetic field.

— High-power
laser beam

—= Emse
=— curment
T

{dh Exasing: The electromagnetic figld is reversed as the high-
powes Laser beam heats the spol, cansing the magnelsc pusticles.
1o be pestored 1o the original polarity.

Banic principle of a magneto-optical dik

» FIGURE 10-b6

Basic operation of reading data from

2 CD-ROM

MEMORY AND STORAGE

ROM Testing

Since ROMSs contain known data, they can be checked for the correctness of the stored data
by reading each data word from the memory and comparing it with a data word that is
known to be correct. One way of doing this is illustrated in Figure 10-67. This process
requires 2 reference ROM that contains the same data as the ROM to be tested. A special test
instrument is programmed 10 read each address in both ROMs simultaneously and to com-
pare the contents. A flowchart in Figure 10-68 illustrates the basic sequence.

» FIGURE 10-&7 Reference
Block disgram for a complete check ROM o
of 3 ROM ROM =
text
—{ Enable Dt * Ref. Daa
ROM tesier
Address

» FIGURE 10-68 START
Flowchart for a complete contents
check of a ROM

* n is the address number.

= 437

MEMORY AND STORAGE = 441

The check test can be impl 1 with a special test mslmmenr or |l c:m be incorpo-

rated as a test routine in the built-in (system) or p ased systems. In
that case, the ROM test routine is aumnmically TUn On SYSIEm Start-up.

RAM Testing

To test a RAM for its ability to store both Os and 15 in each cell, first 0s are written into all the
cells in each address and then read out and checked. Next, 1s are written into all the cells in
each address and then read out and checked. This basic test will detect a cell that is stuck in
either a | state or a 0 state.

Some memory faults cannot be detected with the all-Os-all-1s test. For example. if two
adjacent memory cells are shoned, they will always be in the same state, both 0s or both 1s.
Also, the all-Os-all-15 test is ineffective if there are internal noise problems such that the con-
tents of one or more addresses are altered by a change in the contents of another address,

The Checkerboard Pattern Test One way to more fully test a RAM is by using a checker-
board pattern of Is and (s, as illustrated in Figure 10-71, Notice that all adjacent cells have
opposite bits, This pattern checks for a short between two adjacent cells; if there is a short,
both cells will be in the same state.

After the RAM is checked with the pattern in Figure 10-71{a), the pattern is reversed, as
shown in part (b). This reversal checks the ability ol all cells to store both 1s and Os.

= el

4 FIGURE 10-71
The RAM checkboard test pattemn

A further test is to alternate the pattern one address at & time and check all the other
addresses for the proper pattern. This test will catch a problem in which the contents of an
address are dynamically altered when the contents of another address change.

A basic procedure for the checkerboard test is illustrated by lhe Mowchart in Figure 10-72,
The procedure can be implemented with the system sofi in mic based systems
s0 that cither the tests are automatic when the system is powered up or they can be initiated
from the keyboard.

MEMORY AND STORAGE = 443

| I SEeTIoN 1. Deseribe the checksum method of ROM testing.

| 2. Why can the checksum methed not be applied to RAM teting?
3. List the three basic faults that the checkerboard pattern test can detect in a RAM.

SUMMARY

® Types of semiconductor memories:

RAM ROM FLASH AFQ LIFD CCIy
Random- Al Rend- Readivite <
Access Random Only & Serial Serial Serial
Memory ot Random access access access
access
| |
SRAM DRAM EPROM EEPROM
Erxsable Electrically
i Progran- Exasable’
Statse e =
v Smak mabie PROM
ROM

® Types of SRAMs (Static RAMs) and DRAMSs (Dynamic RAMs):

Faster than DRAM Slower than SRAM
Smubler cupacity Larger capacity i -
than DRAM 1 M r'f'J“"\"" SO
Ofien used ixs sran | Flir-flop DRAM | Sy Mt
< storage cells refreshed
cache: memony
|
[|
“SRAM Harst SHAM M DRAM SDRAM
A . Faa Page Mode Synchiropous
with with syutem chack. AEmcRmaou
system clock Burst ndd B

EDO DRAM
Extended Data
Output
Asynchtonous

BEDO DRAM
Burst EDO
Asyrichronois

MEMORY AND STORAGE

B, The storage cell in 3 SRAM is
{a} aflip-flop (b} a capacitor {e) afuse {d) a magnetic domain
9. A DRAM must be

{a) replaced periodicall b} refreshed periodically
{e) always enabled (d) programmed before each use
10, A flash memory is
(a) volatile (b} a read-only memory
fe) a read/wrile memory (d) noavolatile
(e} answers {a) and (c) (N answers (c) and (d)
11, Hard disk, Mloppy disk, Zip disk, and Jaz disk are all
{a) magneto-optical storage devices (b semiconcuctor storage devices
(e} magnetic storage devices (d) optical storage devices
12, Optical siorege devices employ
(@) uliravioks light (b} eleciromagnetic ficlds
(e} optical couplers {d} lasers

mmn to odd-numbered problems are at the end of the book.

SECTION 10-1

* FIGURE 10-73

445

Basics of Semiconductor Memory
L. Identify the ROM and the RAM in Figore 10-73.

SECTION 10-2

Ay =——ig fidnd Ay ——1 Bdud

4 —— 4 —
Ay —— — o o,

3 n 1 o :
4 — e —— o, Aa —— 1o,
Ay —l —_— . Vy —] — 10,
Ay —7 — o i i,

£ —
' 1
W

da) iy

2, Explain why RAMs and ROMs are both random-aceess memories.
3. Explain the purposes of the address bus and the data bus,

4. What memory address (0 through 256) is represented by cach of the following hexadecimal

numbers;
(m) DA, (b} 3F,, {e) Chy,

Random-Access Memories (RAM;)

5. A static memory areay with four rows similar to the one in Figure 10-8 is initially storing all Os,

‘What is its content after the following conditions? Assume a | selects a row.
Row @ = I, Datain (Bit () = |
Row 1 = 0, Datain (Bit 1) = 1
Row 2 = 1. Daain (Bt 2) = 1
Row 3 = 0, Daain (Bit 3) = 0

6. Draw a basic logic diagram for a 512 * B-bit static RAM, showing all the inputs and outputs,

446 = DIGITAL FUNDAMENTALS

SECTION 10-3

7. Assuming that a 64k < 8 SRAM has a structure similar 1o that of the SRAM in Figure 10-10, deter-
mine the number of rows and 8-bit columns in its memory cell array.

B, Redraw the block diagram in Figure 10-10 for a 64k * 8 memory.
9. Explain the difference between a SRAM and 1 DRAM.
10. What is the capacity of a DRAM that has twelve address lines?

11. For the ROM array in Figure 10-74, determine the outputs for all possible input combinations, and
summarize them in tabular form (Blue cell is a 1, gray cefl is a 0),

» FIGURE 10-74 L R
Address | F. |/

=lel om0
|

12. Determine the truth table for the ROM in Figure 10-75,

» FIGURE 10-75

Ay —4
Ay —

Ay —d

o o
[oy [in o

13. Using a procedure similar to that in Example 10-1, design a ROM for conversion of single-digit
BCD to excess-3 code.

14, What is the total bir capacity of a ROM that has 14 address lines and 8 data ougpwis?

448 = DIGITAL FUNDAMENTALS

i

]
T
1
[l
i
i
i

—
1

1
'
'
I
'
]
'
'
'
'
L
]
'
1
1
1

—
i
i

A 1 S Y T A e O - T
i
i
i

P = __ _
f | -1
2 y ol
m _.__ .I_..
] R G Mm
_ < 2 3
|
i
1
7
m_
e s =2 =
AAAA_MM
18

> FIGURE 10-78

Optical

and
23, Describe the general format of a hard disk.

byte in located? At what address is the last byte in located?

22. In the memory of Prohlem 21, sixtcen bytes are pushed into the stack. At what address is the first

24. Explain seck time and latency period in a hard disk drive.

SECTION 10-8

MEMORY AND STORAGE

25, Why does magnetic tape require a much longer access time than Joes a disk?
26. Explain the differences in & magneto-optical disk. a CD-ROM. and a WORM.

SECTION 10-9 Testing Memory Chips

27. Determine if the contents of the ROM in Figure 10-79 are correct.

= FIGURE 10-7%

ROM

Checksm

o
[NR B
11071
EEE
B
bepoih
44 4) £ 0 o

01106

449

28 A 128 % 8 ROM is implemented as shown in Figure 10-80. The decoder decodes the two most
significant address bits 1o enable the ROMs one at a time, depending on the address selected.

{a) Express the lowest address and the highest address of each ROM as hexadecimal numbers,
(b} Assume that a single checksum is used for the entire memory and it is stored at the highest

address. Develop a Alowchan for esting the complete memory system.

(e} Assume that each ROM has a checksum stored at its highest address. Modify the flawchan
ped in part (b) 1o this change.
{d) What is the disadvantage of using a single checksum for the entire memory rather than a

checksum for cach individual ROM?

T-bit address bus
As A |:° A lju I |:« A h
ROM 0 ROM 1 ROM2 ROM3
Af AR Al A
2 line-to-4 lme
(5 |—(EN EN EN
B-bit data bus

» FIGURE 10-80

29. Suppose that a checksum test is run on the memory in Figure 10-80 and each individual ROM has a
checksum at its highest address, What IC or ICs will you replace for each of the following emor
messages that appear on the system's video monitor?

{a) ADDRESSES 40-5F FAULTY
{b) ADDRESSES 20-3F FAULTY
fc) ADDRESSES 00-TF FAULTY

MEMORY AND STORAGE

SECTION 10-38 Magnetic and Optical Storage
1. Magnetic storage: Moppy disk, hard disk, tape, and magneto-optical disk.
2. Floppy disk storage capacity: 1.44 Mbytes
3. A magnetic disk is organized in tracks and sectors.
4. A magneto-optical disk uses a laser beam and an electromagnet.
5. Optical slorage: CD-ROM, CD-R. CD-RW, DYD-ROM, WORM

SECTION 10-9 Testing Memory Chips
1. The contents of the ROM are added and withap heck
2. Checksum canned be used because the contents of a RAM are not fixed.
3. (1) a short between adjacent cells; (2) an inability of some cells to store both 15 and 0s:

= 451

(3} dynamic altering of the contents of one address when the contents of another address change,

SUPPLEMENTARY PROBLEMS FOR EXAMPLES
101 G,G.6,Gy = 1110
10-2 Connect eight 64k % 1 ROMs in parallel to form a 64k % 8 ROM.
10-3 Sixteen 64k % 1 ROMs
104 See Figure 10-81.

» FIGURE 10-81 A
A
Armtas : Az
o, Hoy
E, o, 10y
E

o [I H‘f

10=5 ROM 1: 0 to 524.287. ROM 2: 524,288 10 1,043,575

SELF-TEST

L. (b} 2 () 3 4 4. (d) 5 da) 6. (dy
7. (e} B ia 9. (b 10, (N 1. (<) 12 ()

INTEGRATED CIRCUIT TECHNOLOGIES

CHAPTER OBJECTIVES

Identify fixed-function digital integrated circuits according to
their complexity

Make basic comparisons between the major IC technologies—
CMOS and TTL

Bxplain how the different series within the CMOS and TTL
families differ from each other

Define propagation delay time, power disipation, rpeed-power
product, and fan-out in relation to logic gates

Determine the noise margin of a device from data theet
parameters

Calculate the power disipation of a device

Explsin how propagation delay affects the freg i
operation or speed of a circuit

Interpret the speed-power product a1 a measure of
performance

Use data sheets ko abtain information about a specific device
Explain what the fan-out of a gate means

Deseribe how basie TTL and CMOS gates operate at the
compenent level

Recognize the difference between TTL totem-pole cutputs and
TIL open-collector cutputs and undentand the limitations and
uses of each

Connect circuits in a wired-AND cenfiguration
Describe the operation of tristate circuits

Properly terminate unued gate inputs
Compare the performance of TTL and CMOS families

= Handle CMOS devices without risk of damage due to electro-
static discharge

« State the advantages of ECL
o Describe the PMOS and NMOS circuits
= Describe an E'CMOS esll

INTRODUCTION

In section 1=4 and 3=7 you learned about the packages, pin
numbers and examples of IC gates. This chapter provides the
basies of digital integrated circuiks such as complexity classifi-
cation of digital ICs and the circuit technologies uied to
implement the gates as well as other types of IC devices.

Two major IC technalogies, CMOS and TTL, are covered
and their operating parameters are defined. Alio, the opera-
tional cl\aractenm chmi’ous families w-lfm these un:u?t
are d. Other circuit technolog
also introduced. Itis m\pnrlzntln keep in mind thal.the
particular circuit technology used to implement a logic gate
has no effect on the logic operation of the gate. In terms of
its truth table operation, a certain type of gate that is imple-
mented with CMOS is the same as that type of gate imple-
mented with TTL. The only differences in the gates are the
electrical characteristics such as power dissipation, switching
speed, and noise immunity.

All or portions of this chapter can be covered at any one
of several appropriate points throughout the book or com-
pletely omitted, depending on the coune objectives.

INTEGRATED CIRCUIT TECHNOLOGIES

11-1 BASICS OF DIGITAL INTEGRATED CIRCUITS

Digital integrated circuits were introduced in Section 1-4 from the point of view of packages
and pin numbers, Examples of 1C gates were given in Section 3-7. Some of the basic o
cepts such as, 1C classification based on circuit complexities and circuit technologies, most
widely used IC technologies CMOS and TTL, performence parameters ane introduced in this
section, The [C techrologies at the circuit component level will be covered in subsequent
sections.

After completing this section, you should be able 1

w Explain the complexity classification of ICs - = Tdentify the moest common CMOS and
TTL series ® Comgpare CMOS and TTL in tenmns of device types and performance

I ® Define proy ion delay time ® Define power dissipation ® Define
Jan-out w Define speed-power proviuer ® Tnterpret basic data sheet information

Complexity Classifications for Fixed-Function ICs

Fixed-function digital 1Cs are classified ling to their plexity. They are listed here
from the least complex to the most complex. The complexity figures stated here for SSI, MSI,

LSI, VLSI, and ULSI are generally accepted, but definitions may vary from one source 1o
another.

Small-scale integration (S51) describes fixed-function 1Cs that have up to twelve
equivalent gate circuits on a single chip, and they include basic gates and flip-flops.

= Medi le int fon (MSI) describes integrated circuits that have from 12 1o 99
equivalent gates on a chip. They include logic functions such as encoders, decoders,
. registers, i ithmetic circuits, small memories, and others.

Large-scale integration (LS1} is o classification of ICs with complexities of 100 o
9959 equivalent gates per chip, including memornies.

w Veryl e i fon (VLSI) describes i 1 circuits with complexities of

B

10,000 10 99,999 equivalent gates per chip.

Ultra large-scale integration (ULSI) describes very large memories. larger micro-
P and larger single-chiy Complexities of 100,000 equi pates
and greater are classified as ULSL

1 e g
£ Circuit g

The types of transistors with which all integrated circuits are implemented are either bipolar
junction transistors of MOSFETs (metal-oxide semiconductor field-effect transistors). Two
types of digital circuit technology that use bipolar junction transistors are TTL (transistor-
transistor logic) and ECL {emitter-coupled logic). OF these two, TTL is more widely used.
The major circuit technologies that use MOSFETs are CMOS (complementary MOS) and
NMOS (n-channel MOS). Microprocessors use MOS 1echnology.

All gates and other functions can be implemented with either type of circuit technology.
551 and MSI circuits arc gencrally available in both TTL and CMOS. LSI, VLS, and ULSI
are generally implemented with CMOS or NMOS because it requires less area on a chip and
consumes less power. Detailed di ion on these i d technologies will be covered in
this section and plete circuit-level age will be introduced in later sections, CMOS

453

INTEGRATED CIRCUIT TECHNOLOGIES

TTL

TTL has been and still is a popular digital IC technology. One advantage of TTL is that it is
not sensitive 10 elecuuslmc discharge a5 CMOS is and, therefore, is more practical in most

Y x| ion and p yping because you do not have to worry about handling
precautions,

TTL Saries Like CMOS, several series of TTL logic gates are available, all which operate
from a 5V de supply. These series within the TTL family differ in their performunce charac-
teristics and are designated by the prefix 74 or 54 followed by a letter or letters that indicate
the series and a number that indicates the type of logic device within the series. A TTL IC
can be distinguished from CMOS by the letters that follow the 74 or 54 prefix.

‘The basic TTL series and their designations are as follows:

& T4—standard TTL (no letter)

= 745—Schottky TTL
T4AS—Advanced Schottky TTL
» T4LS—Low-power Schottky TTL
T4ALS—Ad 1 Low-y hottky TTL.
T4F—Fast TTL

Performance Characteristics and Parameters

Several things define the performance of a Jogic circuit, These performance characteristics ane
the switching speed measured in terms of the propagation delay time, the power dissipation,
the fan-out or drive capability, the speed-power product, the de supply voltage, and the
inputfoutpul logic levels. We will define each of these and then compare the performance of
CMOS and TTL.

Propagation Delay Time This parameter is a result of the limitation on switching speed or
frequency at which a logic circuit can operate. The terms low speed and high speed, applied 10
logic eircuits refer to the propagation delay time. The shorter the propagation delay, the higher
the speed of the circuit and the higher the frequency at which it can operate.

Propagation delay time, 1, of a logic gate is the time interval between the application of
an input pulse and the occurrence of the resulting output pulse. There are two different
measurements of propagation delay time associated with a logic gate that apply o all the
types of basic gates:

e tpgg: The time between a specified reference point on the input pulse and a
comesponding reference point on the resulting output pulse, with the output changing
from the HIGH level 1o the LOW level {HL).

@ Ipyyt The time between a specified reference point on the input pulse and a correspon-
ding reference point on the resulting output pulse, with the output changing from the
LOW level to the HIGH level (LH).

For standard-series TTL gates, the typical propagation delay is 11 ns and for F-series gates
it is 3.3 ns. For HCT-series CMOS, the propagation delay is 7 ns, for the AC series it is 5 ns,
and for the ALVC series it is 3 ns. All specified values are dependent on centain operating con-
ditions as stated on a data sheet. For comparison, one type of ECL has a typical propagation
delay of 0.22 ns.

455

456 m DIGITAL FUNDAMENTALS

-IEXAMPI.E 11-1

Solution

Supplementary Problem

Equation 11-1

Show the propagation delay times of the inverter in Figure 11-1{a).

Tnpue

H I
Output i ; e f

1 1 1

Input ——D}—- Chatput L : ! T !
[| "

‘et e

ia) L]

A FIGURE 11-1

The propagation delay times, fuyy, and 1 4, are indicated in part (b) of the figure. In this
case, the delays are measured between the 50% points of the comesponding edges of the
input and output pulses. The values of fuyy, and £,y are not necessarily equal but in many
cases they are the same.

One type of logic gate has a specified maximum fpy and fpye, of 10 ns. For another type of
gate the value is 4 ns, Which gate can operate at the highest frequency?

DEC Supply Valtage (Vce) The typical do supply voltage for CMOS is either 5 V or
3.3V, depending on the category. An advantage of CMOS is that the supply voltages can vary
over @ wider range than for TTL, The 5 V CMOS can wlerate supply variations from 2 V 10
6V and still operate properly although propagation delay time and power dissipation are sig-
nificantly affected. The 3.3 V CMOS can operate with supply voltages from 2V 1o 3.6 V.
The rypical de supply voltage for TTL is 5.0 V with a minimum of 4.5 V and a maximum of
55V,

Power Dissipation The power dissipation. Py, of a logic gate is the product of the de supply
voltage and the average supply current. Normally, the supply current when the gate output is
LOW is greater than when the gate output is HIGH. The manufacturer’s data sheet usually
designates the supply current for the LOW output state as oy and for the HIGH state as Joey.
‘The average supply current s determined based on a 50% duty cycle (output LOW hall the
time and HIGH half the time), so the average power dissipation of a logic gate is

Teen + 1
Po= V(r(o = cu_)

CMOS series gates have very low power dissipations compared to the TTL series.
However, the power dissipation of CMOS is dependent on the frequency of operation. At zero

juency the qui pawer is typically in the mi fgate range, and at the maximum
operating frequency it can be in the low milliwatt range; th power is i
specified at a given frequency, The HC series, for example, has a power of 2,75 pW/gate at
) Hz (quiescent) and 600 pW/gate at | MHe.

INTEGRATED CIRCUIT TECHNOLGGIES = 457

Power dissipation for TTL is independent of i . For le, the ALS series

1.4 mWi/gate regardless of the frequency and the F series uses 6 mW/gate.

Input and Output Logic Levels Vyy, is the LOW Jevel input voliage for a logic gate, and Vi
is the HIGH level input voltage. The 5 V CMOS accepts a maximum voltage of 1.5V as Vy
and a minimum voltage of 3.5 V as V. TTL accepts 4 maximum voltage of 0.8 V as V), and
aminimum voliage of 2V as Vi

Vg, is the LOW level output voltage and Vi is the HIGH level output veltage. For
5V CMOS, the maximum Vo is 0.33 ¥V and the minimum Vg is 4.4 V. For TTL. the maxi-
mum Vg, is 0.4 V and the minimum Vi 15 2.4 V. All values depend on operating conditions
as specified on the data sheet.

Speed-Power Product (SPP} This parameter (speed-power product) can be used as a meas—
ure of the performance of a logic circuit taking into account the propagation delay time and
the power dissipation. It is especially useful for comparing the varivus logic gate series within
the CMOS or TTL. family or for comparing a CMOS gate to a TTL gate,

The SPP of a logic circuit is the product of the propagation delay time and the power dissi-
pation and is expressed in joules (J), which is the unit of energy, The formula is

SPP = 1,8, Equation 11-2

| EXAMPLE 11-2
A certain gate has o propagation detay of 5 ns and Joey =) mA and fey, = 2.5 mA with a

de supply vollage of 5V, Determine the speed-power product.

A
)— : (= "“-) = 5SV(175mA) = 8.75 mW

SPP = (5 ns)8.75 mWy = 43.75 pJ

Salution Pn = Vi (L n

Supplementary Problem [f the propagation delay of a gate is 15 ns and its SPP is 150 pl, what is its average power
dissipation?

Fan-Qut and Leading The fan-out of a logic gate is the maximum number of inputs of the
same series in an IC family that can be connected 1o a gate’s output and still maintain the
output voltage levels within specified limits. Fan-out is a significant parameter only for TTL.
because of the type of circuil technology. Since very high impedances are associated with
CMOS circuits, the fan-out is very high but depends on frequency because ol capacitive
effects.

Fan-out is specified in terms of unit loads. A unit load for a logic gate equals one input o
a like circuit. For example, a unit load for a 7400 NAND gate equals one input to another
logic gete in the standard 74 series (not necessarily a NAND gate). Because, as specified in
the 7400 data, the current to a HIGH input (£,) of a 7400 gate is 40 pA and the current from a
LOW input 7y) is 1.6 mA, the number of unit loads that a 7400 gate can drive in both output
states is

fon _ for _ 400pA _ 16mA
Im ly 40pA L6mA

Figure 11-2 shows LS logic gates driving a number of other gates of the same circuit tech-
nology, where the number of gates depends on the particular circuit technology. For example,
as you have seen, the maximum number of gate inputs (unit loads) that a standard 74 series
TTL gate can drive is 10. Most of the other TTL series, such as the LS, can drive 20 unit
Toads

Unit loads =

INTEGRATED CIRCUIT TECHNOLG GIES

Std. T

459

I Propagation delay time = CMOS
P Power dissipation TIL

A FIGURE 11-4 & FIGURE 11-5

- Data Sheets

A typical data shee(consists of an mfomuunn page that %hnws. among other things, the logic

and p the the electrical characteristics,
and the 5w:l.ch|ng characu:nmcs Partial d.ata shﬂcls for a 74L500 and a T4HCO0A are shown
in Flgln\s 11=6 and 11=7, respectively. The Imgl.h of data sheets vary and some have much

than others, Manuf: logues can be referred to find the data
shccls of any device,
QUAD 2-INPUT NAND GATE SNSAT4LS00
D CHARAL
* ESD > X500 Vel [T
Sy Parmmter e T Mlas Tt Tt Comabitanan
Ve | o G Vaage T V| Cammrmend inpes 1ENGH Woage e
A s
N B 5 [rrrr——
Vi | gt LW Ve | ¥
SNEUT4LS00 v [Ty A gt
Var | et Clarrp Do Vot -4 =15 v Wew w MIN, lyy = -16 mA
Ve 54 15 LE] v Wi w M gy = MAX. Vi = Vigy
QUAD Z.INPUT NAND GATE LT v [T Tal
. 8,4 [v By = A mA | Vi m Vo MIN, Vi = ¥,
LOW POWER SCHOTTEY Vi Chapus LOW Vil " o ® Yo LS
" = T [v ‘,‘.lnmluv.wmlﬁ
1 Ly | toput HNGH Curens M| mA | Ver = MAR V=27V
FSUFFIX W1 | =4 | Ver = MAK ¥ =10V
CASE W1106 bn | loget LOW Curem a4 | mh | Vor aMAN kyafhaV
1 Ly | Sort Clscull Carest (Nt 1) T M | mA | Ver = MAX
1 I
T . Totsl, Chutpat HIGEH | ma | Ve Max
AASTIC Towl, v a4
CASE 006 Ot LOW
" NITE 1 Pt o s s s s o sheriod 8 e, e o e 1 | socm.
1 w20y
T SLFFIX
u‘ sone Liests
. CASE THA Symbal Farsmeisr Min [[M | e p——
Ly | Mers-0 Dy, Lapust b Ugest | w0 | & m [Py
o A Lpgg | Fora-Os Dby e i st [| B ™ Sl
SNTALS XN Flast:
LS SO0 GUARAS
Symibud Formmcicr Min Trp Man Vnin
Vo | Seres Wasge EREE ER R
M ATE 8 53
Ty | Opcraing Ambcet ~ TR 7] NS
Terrgerms Range ki a H "
b | Comman Cissront - Figh ST na mA
Wt | O st — Low = an | ma
b an

A FIGURE 11-6

The partial data sheet for a 74L500

460 = DIGITAL FUNDAMENTALS

Quad }Inpul NAND Gale High-Performunce Slicon-Gate CMOS

cuosu-m

1o the L5001

MAXIMUM RATTNGS*

. 'rml"s"‘;“ﬁl"_‘:“"‘m M alll Vx| Suppty Wiage (Reireeseed o G0 ST
g e g £ | Vor J U Supply Voliage (Roraced v (N}
L Inges Curvat: | - Vo, | D gt Vibiage (Referemee o G0 T
- High Kobe Ity Churacersc of €03 Uivces CERAMIC PACKAGE | | Vg | DX Oneges Vokags (R (007 CiSwveens| ¥
Aﬂmuumw.lw«'s—nwm CASE 61308 _-"‘! D bt Catreat. por T [E])
oo 13 Ty o Bt Gt M [T | et Corremt, por P 3] it
R ' | O Seppty Cormer, V. and GG P [=t
| LOGIC AGIAM N T | Purwer Dénspasio o S48 A, Plast o Comit ENPY i) -
a : SOIC Packaget s
3 T CASE hdtii TESOW Packapet e
B " To | Shees Veomperatore Gweim | T
' Ty | Lot Termpersture. | em froem o fr 19 ecimih =
- Flasiis DIF, 50K or TESOF Package 20
' ‘ SN PACKAGE R =
H CASE T31AY = Munimin atgs
Fmtrmal et perating Comitions.
+ During — Phamic DIP: - 30 mWPC faomn 657 b 1257 C
DT SURTY s DA - 18 WL fiom 105" o 133° €
TEOFPACRACE SOKC Packags: — 7 mWC from £5° 10 1247 C
CASE $430-01 TSRO Package: - 6.1 sW/ T froms f5° b0 115 €
CEDERING oK
FIN 14 Vi MCSHCRNAT Cormmc RECOMMENDED OFERATING CONIITIONS
PN T 0ND i r—
MCTACXNAD 50K ‘:: \,&
| Yoo LV |
FUNCTION TABLE = ss v |
T .
C 1 Doou_| INED
A] ¥ v..,..nnv o | s
[n L W
L W W
" L "
" " L
"
Symisa Totmtmeter Comditian
Vot | Vimesmit High-Level Riges Vikage | V.oa = 1017 0% Ve
Il & 208
Vo | Vi Low-Level et VORSge | Vg = 019 o Ver- - 01V
[[EET
Ve | Marsm g Lo Gugas Wikage | Vo = Vg o Vi
el & e
[eEEr
e ey
o5 3. 2mA
Via | Miamem Lo Lovel Chpat Veliage
Tl % LA
U] 4 Do
53 2
Vor
Syt Farsmster v
i | Mhasinmm Propgation Dolay, Tnpet A o0 B 1o Ot ¥ o
e in
as
0
i | Mhimitrses Oyt Tramsion Tomse, Ay Ol 0
m aw
45
&
Wharimin et Capas o o

Typiel @ 30, Ve w SN Vig w8V
2 o

4 FIGURE 11-7

The partial data sheet for a TAHCO0A

INTEGRATED CIRCUIT TECHNOLOGIES = 461

| |secTion 11-1
! | o 1. Define the terms 551, MS, LS, VLSI, and ULSL.

2. Generally, in what claification does a fixed-function IC with the following number of
equivalent gates fall?

(a) 75 (b) 500 (<) 10 (d) 15,000 (e) 200,000

3. List three types of IC technologies and name the two that are the most widely used,

4. Identify the following IC logic designators:

(aJ s (b)ALS (c) F (d) HC (e) AC (f) HCT (g) LV

5. Identify the follewing devices according to logic fi
(a) 741504 (b) 74HCO0 (c) 74LV08 (d) 74ALS10
(a) 7432 (/) 74ACTI1 (g} 74AHCO2

6. Which IC technology generally has the lowest power dissipation?

7. What does the term hex inverter mean? What does quad 2-input NAND mean?

8. A positive pulie i applied to an inverter input. The time from the leading edge of the
input to the leading edge of the output is 10 ns. The time from the trailing edge of the
input to the trailing edge of the output is B n. What are the values of toyy and te,?

9. A certain gate has a propagation delay time of 6 ns and a power dissipation of

3 mW. Determine the speed-power product?
10. Define lcy and lecy.
11. Define Vi and Vi,
12. Define Vo and Vou.

When you work with digital ICs, you should be familiar, not only with their logical opera-
tion, but also with such operational properties as voltage levels, noisg immunity, power dissi-
pation, fan-out, and propagation delays. In this section, the practical jispects of these proper-
ties are discussed,

After completing this section, you should be able to !

= Determine the power and ground connections ® Deseribe the logic levels for CMOS and
TTL = Discuss noise immunity ® Determine the power dissipation of a logic cinarit

= Define the propagation delays of a logic gale ® Discuss speed-power product

explain its significance ® Discuss loading and fan-out of TTL and CMOS

. DC Supply Voltage

The nominal value of the de supply voltage for TTL (transistor-transistor logic) devices is
+5 V. TTL is also designated T°L. CMOS (complementary metal-oxide semiconductor)
devices are available in two different supply voltage categories, +35 V and +3.3 V, the later is
known as low-voltage CMOS. Although omitted from logic diagrams for simplicity. the
de supply voltage is connected to the Vee pin of an IC package, and ground is connected to
the GND pin. Both voltage and ground are distributed internally to all elements within the
package, as illustrated in Figure 11-8 for a 14-pin package.

BASIC OPERATIONAL CHARACTERISTICS AND PARAMETERS

462w DIGITAL FUNDAMENTALS

- FIGURE 11-8

{a} Single gate

CMOS Logic Levels

o
| I N [
aND

by 1C dual in-line package

Logic levels were discussed briefly in Chapter 1. There are four different logic-level specifica-
tions: Vi, Vi, Voo, and Vi For CMOS circuits, the ranges of input voltages (Vy) that can
represent a valid LOW (logic 0) are from 0 V to 1.5V for the +5 V logic and 0V 10 0.8 V for
the 3.3 V logic. The ranges of input voltages (Vi) that can represent a valid HIGH (logic 1)
are from 3.5V o 5V for the 5V logic and 2 V to 3.3 V for the 3.3 V logic, as indicated in
Figure 11-9. The ranges of values frem 1.5V 1o 3.5V for 5V logicand 0.8V 102V for 33V

= FIGURE 11-9 tnpua
Input and output logic levels for (2
CMOs v d Logic |
L] (HIGH)
|
Lasy
Unallowed
(15V
S | Logic 0
Y l LOW)
oy
(a) +5V CMOS
Input
f 13V
|
| Logic |
Vi 4 (HIGH)
|
v
Unaliowed
15V
Logic 0
¥ ILOWS
Hy

thy +3.3 V CMO5

Oupat

[sv
, Logic 1 (HIGH)
i} J\ sav X

"

Unaliowed

.. [omv
Vi { Logic 0 (LOW)

oy

Chatgat
[33¥
v Lagic |
ol (HIGH)
Laav
Unallowed
04V
| Logic 0
Vi] ILOW)

iy

¥

Tiljman

Vottimmy

INTEGRATED CIRCUIT TECHNCLOGIES & 463

logic are regions of unpredictable performance, and values in these ranges are disallowed.
When an input voltage is in one of these ranges, it can be interpreted as either a HIGH or a
LOW by the logic circuit. Therefore, CMOS gates cannot be operated reliably when the input
voltages are in these unallowed ranges.

The ranges of CMOS output voltages (Vo and Vi) for both 5V and 3.3 V fogic are also
shown in Figure 11-9, Notice that the minimum HIGH output voltage, Vigymn, i5 greaer
than the minimum HIGH input voltage, Vijjmi, Also, notice that the maximum LOW output
voltage, Vogimax. i3 less than the maximum LOW input voltage, Vi yman.

TTL Logic Levels

The input and output logic levels for TTL are given in Figure 11-10. Just as for CMOS, there
are four different logic level specifications: Vi, Vi, Voo, amd Vo

» FIGURE 11-10 Taput Chlys
gE 1Y Vi Cos
Input and eutput logie levels for TTL. 1 N " '
|
i
. Lagie | Vi
Vi {I (HIGH) "1
| i
l 24V Uy
v Virnuin
Usliowred Unalirwed
nsv
vy Logie 04LOW) Casv
‘ N) Vo OV [ogic o iiows
ov Vit somimt 0y

Noise Immunity

Noige is unwanted voltage that is induced in electrical circuits and can present @ threat to the
pmpcr aperation ul' the circuit. W‘n:s. and other conductors within a system can pick up stray
i from adj I in which currents are
chnn,pug rapidly or from many other sources external to the system. Also, power-line voltage
Nuctuation is a form of low-frequency noise.
In order not to be adversely affected by noise, a logic circuit must have a certain amount of
noise immunity. This is the ability to tolerate a certain amount of enwanted voltage fluctua-
tion on its inputs without changing its output state. For example, if noise voltage causes the
input of a 5 V CMOS gaie to drop below 3.5 V in the HIGH state, the input is in the unal-
lowed region and operation is unpredictable (see Figure 11-9). Thus, the gate may interpret
the fluctuation below 3.5V as a LOW level, as illustrated in Figure 11-11{a). Similarly, if
noise causes a gate input to go above 1.5 V in the LOW state, an uncertain condition is
created, as illustrated in part (b).

464 m DIGITAL FUNDAMENTALS

= FIGURE 11-11
lhestration of the effects of
input nokie on gate operation

Equation 11-3'
Equation 11-4

= FIGURE 11-12

ﬁ.,n.,.., Vi level
Yor A AV/\\ A [\’\ ;.\J;’\v For
SV AV R e /U
Unallowed N h Poscyaia) reaprrie’
T e
LOW op its input and nespond acoordingiy,

{a}

If excessive noise causos input to go shove
ViLisaan- the Erbe may “think” that there is a
HIGH 0m its inpat ad respord accordingly. \

Potential response
1o excessive polse
Unallowed N
- A spike on input

=

M_: . /\/’\f\\/ﬁ/‘/\[1r\\/\//\ TL—D‘ VI‘H—L

Naise riding on Vy_level
()

Noise Margin

A measure of a circuit's noise immunity is called the nolse margin, which is expressed in
valts. There are two values of noise margin specified for a given logic circuit: the HIGH-level
noise margin (Vi) and the LOW-level noise margin (Vi). These parameters are defined by
the following equations: i

'
Y = Vomiminr = Vms.im

Var = Vitimay ~ Youmbs
Sometimes, you will see the noise margin expressed as a percentage of V. From the equa-
tions, Viy is the difference between the lowest possible HIGH output from a driving gate
(¥ourmisy} 20d the lowest possible HIGH input that the load gate can tolerate (Vyygmin). Noise
margin Vi is the difference between the maximum possible LOW input that a gate can toler-
ate (Vigiman) and the maximun possible LOW output of the driving gate (Vopme,). Noise
margins are illustrated in Figure 11-12.

v

Himin,

44V

HIGH
HIGH

Thie voltage on this line will never The voliage on this line will never
be less than 4.4V unbess noise or exceed (L33 V unless noise or
improper operation is mtroduced. ingpeoper operstion is inrodeced.

(ah HIGH-level nakse margin by LOW-evel noise margin

466 = DIGITAL FUNDAMENTALS

Equation 11-5

Equation 11-6

I EXAMPLE 11-4

Solution

Supplemantary Problem

cyele is 50, the output is HIGH half the time and LOW the other half. The average supply
current is therefore

tee = Tecn ;' leau,

The average power dissipation is

Py = Veelee

A certain gate draws 2 pA when its output is HIGH and 3.6 pA when its output is LOW,
‘What is its average power dissipation if Ve is 5 V and the gate is operated on a 50% duty
cycle?
The average fe-is
Teen + Iy, 20pA + 36 pA
2 2

Iec 28 pA

‘The average power dissipation is
Pp = Vool = (S VH2.8 pA) = 14 xW

A certain 1C gate has an foeyy = 1.5 pA and I, = 2.8 pA. Determine the average power
dissipation for 30% duty cycle operation if Vec is 5V,

Power dissipation in a TTL circuit is essentially constant over its range of operating fre-
quencies, Power dissipation in CMOS, b L 18 freg depend Itis Iy low
under static (de) ions and i as the freg i These ch istics are
shown in the general curves of Figure 11-14, For example. the power dissipation of a low-
power Schottky (LS) TTL gate is a constant 2.2 mW. The power dissipation of an HCMOS

gate is 2,75 pW under static conditions and 170 gW at 100 kHz.

Propagation Delay

When a signal passes {propagates) through a logic circuit, it always experiences a time delay, as
illustrated in Figure 11-15. A change in the output level always occurs a short time, called the
propagation delay time, later than the change in the input level that caused it

Tapizt Outpat

- Delay =]
PR . A E—
T T I

o FIGURE 11-14 ~ FIGURE 11-15

Power verus frequency curves for A basic illitration of propagation
TTL and CMOS delay

INTEGRATED CIRCUIT TECHNOLOGIES = 447

As mentioned in Section 11.1, there are two propagation delay times specified for logic
gates:

=ty [he time between a designated point on the input pulse and the comresponding
point on the output pulse when the output is changing from HIGH 10 LOW.

= fpryt The time between a designated point on the input pulse and the corresponding
point on the output pulse when the output is changing from LOW to HIGH.

These propagation delay times are illusteated in Figure 11-16, with the 50% points on the
pulse edges used as references.

= FIGURE 11-14 H
Propagation delay times toput :D_ ety

W= HIGH
L=LOW

The propagation delay of a gate limits the frequency at which it can be operated. The
greater the propagation delay, the Jower the maximum frequency. Thus, a higher-speed circuit
is ome that has a smaller propagation delay. For example, a gate with a delay of 3 ns is
faster than one with a 10 ns delay.

Speed-Power Product
The speed-power product provides a basis l'm the cm‘nmnwn of logic circuits when both
propagation delay and power dissipation are i ions in the selection of the

type of logic to be used in a certain appl:calmn ‘The lower the speed-power product, the
better. The unit of speed-power product is the picojoule (pl). For example, HCMOS has a
speed-power product of 1.2 pJ at 100 kHz while LS TTL has a valve of 22 pl.

Loading and Fan-Out

‘When the output of a logic gate is connected to one or more inputs of other gates, a load o
the driving gate is created, as shown in Figure 11-17. There is a limit to the number of load
gate inputs that a given gate can drive. This limit is called the fan-out of the gate,

* FIGURE 11-17 Dietving gase

Loading a gate output with gate
inputs

INTEGRATED CIRCUIT TECHNOLOGIES ® 469

connected, Vi drops below Vo e, and the HIGH-level noise margin is reduced. thus com-
promising the circuit operation. Also, as the total source current increases, the power dissipa-
tion of the driving gate increases,

> FIGURE 11-20 5V
HIGH-state TTL loading

ey

The fan-out is the maximum number of load gate inputs that can be connected without
adversely affecting the specified operational characteristics of the gate. For example, low-
power Schottky (LS) TTL has a fan-out of 20 unit loads. One input of the same logic family
as the driving is called a unit load,

The total sink current also increases with each load gate input that is added, as shown in
Figure 11-21. As this current increases, the internal voltage drop of the driving gate increases,
causing Vo to increase. If an excessive number of loads are added, Vo exceeds Vopmay, and
the LOW-level noise margin is reduced.

» FIGURE 11-21 *5V
LOW-stage TTL loading

Vo LOW —

“Toual sink £ Toan £S5V

|1}-—-

fun

™

In TTL, the current-sinking capability (LOW output state) is the limiting factor in deter-
mining the fan-out.

SECTION 11-2
I W 1. Define Vi, Vi, Viors and V. ;

Anwers are at the end of 2. I it better to have a lower value of noiie margin or a higher value?
- the chapter, 3. Gate A has a greater propagation delay time than gate B. Which gate can operate at a
higher frequency?
4. How does excessive loading affect the noise margin of a gate?

11-3 CMOS CIRCUITS

470 = DIGITAL FUNDAMENTALS

Basic internal C\clOS circuitry and its opcraunu are d.umsscd in this section. The abbrevia-

tion CMOS stands for 1l v

refers to the use of two types of transistors in the output circuit. An n-channel MOSFET

1al-oxide

The term ¢ !

{MOS field-effect transistor) and a p-channel MOSFET are used.

After completing this section, you should be able 1o

= [dentify a MOSFET by its symbol

= Describe the basic operation of a CMOS inverter circuit
operation of CMOS NAND and NOR gates ® Explain the operation of a CMOS

gate with an open-drain output

= Discuss the switching action of a MOSFET

® Describe the basic

® Discuss the operation of tristate CMOS gates

® List the precautions required when handling CMOS devices

The MOSFET

v

Metal-oxide semiconductor field-effect transistors (MOSFETS) are the active switching
elements in CMOS circuits. These devices differ greatly in construction and internal operation
from bipolar junction transistors used in TTL circuits, but the switching action is basically the
same: they function ideally as open or closed switches, depending on the input.

Figure 11-22(a) shows the symbols for both n-channel and p-channel MOSFETs. As
indicated, the three terminals of a MOSFET are gate, drain, and source. When the gate voltage
of an n-channel MOSFET is more positive than the source, the MOSFET is on (samration), and
there is, ideally, a closed switch between the drain and the source. When the gate-to-source
voltage is zero, the MOSFET is off (curaff), and there is, ideally, an open switch between the
drain and the source. This operation is illustrated in Figure 11-22(b). The p-channel MOSFET

P with opposite voltage pol, as shown in part (c).
+5Y 5V
Drain
Gute J q +5 \
Source =L L
p-channel = =
b m-channel mlkJ\

ES

1

rc}Mmle

1l

4 FIGURE 11-22

s
ll}——OH_,o-W\ro

Basic symbols and wetching action of MOSFET:

INTEGRATED CIRCUIT TECHNOLOGIES ® 471

Sometimes a simplified MOSFET symbaol as shown in Figure 11-23 is used.

+ FIGURE 11-23
Simplified MOSFET symbol I

CMOS Inverter

Complementary MOS (CMOS) logic uses the MOSFET in complementary pairs as its basic
element. A complementary pair uses both p-channel and n-channel enhancement MOSFETs,
as shown in the inverter circuit in Figure 11-24.

> FIGURE 11-24 +¥oo
A CMOS inverter cincuit

Gate 1G) Source (51

@&
| j Dvain i)

'
Dezim (Dp
P
Jh—l &
-1
Gze 161 I Source (S)

Charpat

Inpu

When a HIGH is applied to the input, as shown in Figure 11-25(a). the p-channel
MOSFET @, is off and the n-channel MOSFET @, is on. This condition connects the cutput
to ground through the on resistance of 25, resulting in a LOW output. When a LOW is applied
to the input, as shown in Figure 11-25(b), () is on and @, is off. This condition connects the
output 1o +Vpp (de supply voltage) through the on resistance of 0y, resulting in a HIGH
outpat.

» FIGURE 11-25 +Von

Cperation of a CMOS inverter
I @
OFF

HIGH —4

}— LOW LOwW —9
@

o

() HIGH input. LOW sutput () LOW input. HIGH outpat

CMOS NAND Gate

Figure 11-26 shows a CMOS NAND gate with two inputs. Notice the arrangement of the
complementary pairs (n-channel and p-channel MOSFETs).

472 ® DIGITAL FUNDAMENTALS

» FIGURE 11-26
A CMOS NAND gate circuit

Inpat A

L
e
Il ff —————————— 4 1
€ = cutalf (off)
§ = saturation jon)

H = HIGH
L=LOW

The operation of a CMOS NAND gate is follows:

= When both inputs are LOW, @, and (2; are on, and (% and (2, are off. The output is
pulled HIGH through the on resistance of () and (% in parallel.

When input A is LOW and input B is HIGH, (2, and {, are on, and (J, and {0, are off.
The output is pulled HIGH through the low on resistance of .

When input A is HIGH and input B is LOW, O, and @, are off, and (J; and (2, are on.
The output is pulled HIGH through the low on resistance of Q.

Finally, when both inputs are HIGH, @, and (, are off, and @, and (, are on. In this
case, the output is pulled LOW through the on resistance of (5 and (, in series to
ground,

“CMOS NOR Gate

Figure 11-27 shows a CMOS NOR gate with two inputs. Notice the arrangement of the com-
plementary pairs.

= FIGURE 11-27 +Vop

A CMOS NOR gate circuit
Input 4 —4
l G

Inpet &

S
C
5
o

wmwnn
wnwn
i R R

INTEGRATED CIRCUIT TECHNOLOGIES

(a) by
& FIGURE 11-35
Operation of a TTL inverter
® FIGURE 11-3é
ATIL NAND gate circuit
Tnput A —
Input i
3
= FIGURE 11-37 B B
Diode equivalent of a TTL multiple-
‘emitter transistor
Dy by
El [« El 4 »
Dy
B2 Er —

input B forward-biases the respective diode and reverse-biases D; (@, base-collector junc-
tion). This action keeps (; off and results in a HIGH output in the same way as described for
the TTL inverter. Of course, a LOW on both inputs will do the same thing.

A HIGH on both inputs reverse-biases both input diodes and forward-biases D; (0, base-
collector junction). This action turns {, on and results in a LOW output in the same way as
described for the TTL inverter. You should recognize this operation as that of the NAND fune-
tion: The output is LOW only if all inputs are HIGH.

[Open-Collector Gates

The TTL gates described in the previous sections all had the totem-pole output circuit.
Another type of output available in TTL integrated circuits is the open-collector output. This

477

480 = DIGITAL FUNDAMENTALS

5 | PRACTICAL CONSIDERATIONS IN THE USE OF TTL

Although CMOS is the more predominant IC technology in industry and commercial appli-
cations, TTL is still used. In educational applications, TTL is usually preferred because it
does not have the handling restrictions that CMOS does due to ESD. Because of this, several
practical considerations in the use and application of TTL circuits will be covered using

standard TTL for illustration.

After completing this section, you should be able 1w

i circuit for wired-

= Describe current sinking and current ing

= Use an op

AND operation ® Describe the effects of connecting two or more totem-pole outputs
Use open-collector gates to drive LEDs and lamps ® Explain what to do with unused
TTL inputs

Inpug =9

() Currenl sourcing (fyy value is maximam)

_,Ek

=
=

L gnn

|
.

[N
Dy
Crurpun
Q.

= h,

() Current sinking {f;; value is maximum)

4 FIGURE 11-43

L

Current sinking and sourcing acticn in TTL

INTEGRATED CIRCUIT TECHNOLOGIES = 481

[Current Sinking and Current Sourcing

The concepts of current sinking and current sourcing were introduced in Section 11-2. Now
that you are familiar with the totem-pole-output circuit configuration used in TTL, let us look
closer at the sinking and sourcing action.

Figure 11-43 shows a standard TTL inverter a totem-pole output connected to the
input of another TTL inverter. When the driving gate is in the HIGH output state, the driver is
sourcing current to the load, as shown in Figure 11-43(a). The input to the load gate is like a
reverse-biased diode, so there is practically no current required by the load. Actually, since the
input is nonideal, there is a maximum of 40 gA from the totem-pole output of the driver into
the load gate input.

When the driving gate is in the LOW cutput state, the driver is sinking current from the
Toad, as shown in Figure 11-43(b). This current is 1.6 mA maximum for standard TTL and is
indicated on a data sheet with a negative value because it is our of the input.

IEJMMPLE 11-5
When a TTL NAND gate drives five TTL inputs, how much current does the driver output

source, and how much does it sink?

Solution Total source current (in HIGH outpur state):
Tipmany = 40 A per input
Fjscnecey = (5 inputs)(40 pAfinput) = 5(40 pA) = 200 pA
Total sink current (in LOW output state):
Timary = — 1.6 MA per input
Trisiney ™ (3 inputs)(= 1.6 mASfinput) = 5(=1.6 mA) = =8.0 mA

Supplementary Problem Repeat the calculations for an LS TTL gate. Refer to a data sheet.

| EXAMPLE 11-6
Refer to the data sheet in the catalogue and determine the fan-out of the 7400 NAND gate.

Solution According to the data sheet, the current parameters are as follows:

Tygimary = 40 pA Tosmay = —400 pA
Tman = =16mA Joyimay = 16 mA

Fan-out for the HIGH output state is calculated as follows: Cumrent foygnay) i the maxi-
mum current that the gate can source to a load. Each load input requires an fiyyma of
40 pA. The HIGH-state fan-out is

|fuu._..£|! = 400 pA =10
Titpimany | 40 pA

For the LOW output state, fan-out is calculated as follows: foymay 15 the maximum current
that the gate can sink. Each load input produces an Jip jp.,, of — 1.6 mA. The LOW-state
fan-out is

Togmay

_ l6mA

=10
L6 mA

;II o max)
In this case both the HIGH-state fan-out and the LOW-state fan-out are the same.

Bl Probl, I

the fan-out for a T4LS00 NAND gate.

482 ® DIGITAL FUNDAMENTALS

= FIGURE 11-45

‘Open-collector wired negative=

AND operation with inverters

“Using Open-Collector Gates for Wired-AND Operation

The outputs of open-collector gates can be wired together to form what is called a wired-AND
configuration. Figure 11-44 illustrates how four inverters are connected 1o produce a 4-input
negative-AND gate. A single external pull-up resistor, R,,, is required in all wired-AND cir-
cuits.

» FIGURE 11-44

A wired-AND configuration of four
invertens

When one (or more) of the inverter inputs is HIGH, the output X is pulled LOW because an
output transistor is on and acts as a closed swilch to ground, as illustrated in Figure 11-45{a).
In this case only one inverter has a HIGH mput. but r:ua is sufficient to pull the output LOW

through the d output istor () as
45y +V
| o
| =
LT R
|]
HIGH LOW o
ON|
e |l [
LS e
LOW OFF LOW OFF
& &
= $——LOW = $#——HIGH
| H
i i
Low OFF LOW —D——-I:Cﬂ_'l-,
2. @

{a) When one or mafe OUEpUL tARsisIONs are
on, the output is LOW.

(h) When all output transistors are off,
the outpat is HIGH.

For the oulpul Xiobe }[[GH. all :nverm' inputs must be LOW so that all the open-collector
output are off, as indicated in Figure 11-45(b). When this condition exists, the
output X is pulled HIGH through the pull-up resistor. Thus, the output X is HIGH only when
all the inputs are LOW, Therefore, we have a ive-AND function, as exp 1 in the
following equation:

X=ABCD

l EXAMPLE 11-7

Solution

INTEGRATED CIRCUIT TECHNOLOGIES = 483

Write the output expression for the wired-AND configuration of open-collector AND pates
in Figure 11-46.

» FIGURE 11-46

+Vee
")
>
=k
1
DS
I
(
n—
7 —0K
:
¥

The output expression is
X = ABCDEFGH
The wired-AND connection of the four 2-input AND gates creates an 8-input AND gate.

|EXAMPLE 11-8

D ine the output expression if NAND gates are used in Figure 1146,

Three open-collector AND gates are connected in a wired-AND configuration as shown in
Figure 1147, Assume that the wired-AND circuit is driving four standard TTL inputs
{— 1.6 mA each).

(@) Write the logic expression for X.

(b) Determine the minimum value of R, if Jy puy, for each gate is 30 mA and Vi 15
04V

» FIGURE 11-47

488 = DIGITAL FUNDAMENTALS

SECTION 11-6 .
| In;wf_w 1. What is a BICMOS circuit?

2. In general, what is the main advantage of CMOS over bipolar (TTL)?

EMITTER-COUPLED LOGIC (ECL) CIRCUITS

Emitter-coupled logic, Iike TTL. is a bipolar technology. The typical ECL circuit consists of
a different amplifier input circuit. a bias circuit, and emitter-follower outputs. ECL is much
faster than TTL because the transistors do not operate in saturation and is used in more
specialized high-speed applications.

After completing this section, you should be able to

= Describe how ECL differs from TTL and CMOS ® Explain the advantages and
disadvantages of ECL

An ECL OR/NOR gate is shown in Figure 11-53(a). The emitter-follower outputs provide
the OR logic function and its NOR complement, as indicated by Figure 11-53(b).

Because of the low output impedance of the emitter-follower and the high input impedance
of the differential amplifier input, high fan-out operation is possible. In this type of circuit,
saturation is not possible. The lack of saturation results in higher power consumption and
limited voltage swing (less than 1 V), but it permits high-frequency switching.

Dhfferential Bigs Complementary
Multiple inputs umplifier circuit oulpuls
+—5 Voo (gnd)
<<
F J
- l‘\—ccnoul.pm A A+B+C+ D
= a
] =
j e & NOR cutput n T FIC3D
ikl
b 4
. 4
<+ -09V
z =
Ve]
(=5.2V)
=173V
-14V -12V
Input voltage
(]
A FIGURE 11-53
An ECL OR/NOR gate eircuit

The Vi pin is normally connected to ground, and the Vg pin is connected to —5.2 V from
the power supply for best operation. Notice that in Figure 11-53(c) the output varies from a
LOW level of —1.75 V to a HIGH level of —0.9 V with respect to ground. In positive logic
a 1 is the HIGH level (less negative), and a 0 is the LOW level (more negative).

INTEGRATED CIRCUIT TECHNOLOGIES ™ 489

Noise Margin
As you have learned, the noise margin of a gate is the measure of its immunity to undesired
voltage fMuctuations (noise). Typical ECL circuits have noise margins from about 0.2 V 10
0.25 V. These are less than for TTL and make ECL less suitable in high-noise environments.
Comparison of ECL with TTL and CMOS

Table 11-2 shows a comparison of key performance parameters for F and AHC with those for
two ECL series, 10H and E-lite.

= TABLE 11-2

Comparisen of twe ECL series ;ﬂ
performance parameten g
Speed 'f!
Gate propagation |
delay, £, (ns) 33 37 1 0.2 4

FF maximum =

clock freg. (MHz) 145 170 330 2800 1]

Power Dissipation q

Per Gate 2

Bipolar; 50% de 89 mW 25 mW TImwW |

CMOS: quiescent 25 W

L T e s o P ppe——.

SECTION 11-7 = .
I REVIEW 1. What & the primary advantage of ECL over TTL?

2. Name two disadvantages of ECL compared with TTL.

[1158 pmos, NMOS, AND E*CMOS

The PMOS and NMOS circuits are used largely in LSI functions, such as long shift regis-
ters, large memories, and microprocessor products, Such use is a result of the low power
consumption and very small chip area required for MOS transistors. E'CMOS is used in
reprogrammable PLDs.

After completing this section, you should be able to

» Describe a basic PMOS gate ® Describe a basic NMOS gate ® Describe a busic
E’CMOS cell

PMOS

Gne of the first hlgh-denhuy MOS circuit technologies 10 be produced was PMOS. It utilizes
h 1 MOS istors to form the basic gate building blocks.
Figure 11-54 shows a hmu. PMOS gate that produces the NOR function in positive logic.

4%0 ® DIGITAL FUNDAMENTALS

= FIGURE 11-54 Vg 0 groand
Basic PMOS gate
(4 ﬁ @
Tnpuzs
B —l 2;
Oharpur
2y
Voo

The operation of the PMOS gate is as follows: The supply voltage Vg is a negative
voltage, and Ve is a posmve voltage or ground (0 V). Transistor 0y is perm.amnﬂy biased to
create 4 Its sole purpose is to function as a current-
limiting resistor. If a HIGH (Vic) is applied to input A or 8, then Q, or (; is off, and the
output is pulled down to a voltage near Vgg, which represents a LOW, When a LOW voluage
(Vo) is applied to both input A and input B, both @, and (% are wrned on, This causes the
output 10 go to a HIGH level (near V). Since a LOW output occurs when either or both
inputs arc HIGH, and a HIGH output occurs only when all inputs are LOW, we have a NOR
gale.

NMOS

The NMOS devices were developed as processing technology improved. The a-channel MOS
transistor is used in NMOS circuits, as shown in Figure 11-55 for a NAND gate and a NOR
gate.

In Figure 11-55(a). 5 acts as a resistor to limit current, When a LOW (Vgg or ground) is
applied to one or both inputs, then at least one of the transistors () or (J,) is off, and the
output is pulled up to a HIGH level near V. When HIGHs (V) are applied to both A and B,
both @, and Q5 conduct, and the output is LOW. This action, of course, identifies this circuit
as a NAND gate,

In Figure 11-55(b), {; again acts as a resistor. A HIGH on either input turns @y or Q; on,
pulling the output LOW, When both inputs are LOW, both transistors are off, and the output is
puiled up to a HIGH level.

E’CMOS

E*CMOS technology is based on a combination of CMOS and NMOS technologies and is
used in programmable logic devices such as GALs and CPLDs. An E’CMOS cell is built

around a MOS transistor with a I'[oali.ng gate that is charged or disch d by a
small prog ing current. A sch nfﬂnsrypeofcell |uhawn1n]=‘gure11 s6.
Whealltel]uahnggalzlschargedlolpmuve l by the sense

transistor is turned on, storing a binary zero. When the foating gate is chlrged 10 a negative
potential by placing electrons on it, the sense transistor is tamed off, storing a binary 1. The
control gate controls the potential of the floating gate. The pass transistor isolates the scnse
transistor from the amray during read and write operations that use the word and bit lines.

INTEGRATED CIRCUIT TECHNOLOGIES = 4%1

> FIGURE 11-55 Ver Vee
Two NMOS gates
o —
! t—
- il]
—— Ouipt — Oupu
| @) A
"A — [)
Input A Tnput &
Ingats &
Vg or ground
-
Vi of prownd
() NAND (b} NOR
* FIGURE 11-5&
Bit line
An E'CMOS cell Pass transistor
Ward line

Substrise

h

Flaating gate — ~

Conatrol gate H r

Cell graund

Sense fransistor

The cell is programmed by applying a programming pulse to either the control gate or
the bit line of a cell that has been selected by a voltage on the word line. During the pro-
gramming cycle, the cell is first erased by applying a voltage to the control gate to make
the floating gate negative. This leaves the sense transistor in the off state (storing a 1). A
write pulse is applied to the bit line of a cell in which a 0 is to be stored. This will charge
the floating gate 1o a point where the sense transistor is on (storing a 0). The bit stored in
the cell is read by sensing presence or absence of a small cell current in the bit line. When
a 1 is stored, there is no cell current because the sense transistor is off. When a 0 is stored,
there is a small cell current because the sense transistor is on. Once a bit is stored in a
cell, it will rernain indefinitely unless the cell is erased or a new bit is written into the cell,

ol e : e —
|
| I;Eis'.::?:‘ 2 1. What is the main feature of NMOS and PMOS technology in integrated circuits? I

| 2. What is the mechaniim for charge storage in an E'CMOS cell? |
|

492 w DIGITAL FUNDAMENTALS

® The categories of 1Cs in terms of circuit lexity are 551 (small-scal i MSI (medium-
scale integration), LSL, VLS, and ULSI {large-scale, very large-scale, and ulira large-scale integra-
tion).

® TTL is made with bipelar junction ransistors.

® CMOS is made with MOS ficld-cffect transistors.

= As 3 rale, CMOS has the lowest power consumption, TTL is next, and ECL has the highest power

consamption.
® The average power dissipation of a logic gate is

fecu + I
py = VUL(%)

= The speed-power product of a logic gate is
SPP = 1Py

High-level noise margin of a gate is
Vi = Vasimes = Vistimins
& Low-level notse margin of o gate s —
Vit = Vigman = Vot
= Average de supply current for a gase is
foe = Ioew + dea,
2
& Power dissipation of a gate is
P = Veoeo
Totem-pale outputs of TTL cannot be connected together.
Open-collector and open-drain outputs can be connected for wired-AND,
A TTL device is not as vulnerable to i di (ESDY) &s is a CMOS device.
Because of ESD, CMOS devices must be handled with great care,
ECL is the fastest type of logic circuit,
ESCMOS is used in GALs and other PLDs.

<
5

Answers e at the end of the chapter.

1. A fixesd-function IC package ining four ANI» gates in an example of
{a) Msl {b) SMT {e) SOIC {dy 851
2. An LSl device has a circuit complexity of
(@) 12 10 99 equive’ vt gates (b} 100 to 9999 equivalent gates
{e) 2000 10 SO0 e uivalent gates (d) 10,000 10 99,999 equivalent gates
3. A positive-guing pulse is applied to an inverier. The time interval from the leading edge of the input
10 the leading edge of the cnput is 7 ns. This parameter is
(a) speed-power product (b) propagation delay, fp
{€) propagation delay, fpgy (d) pulse width
4, The CMOS family with the fastest swiiching speed is
{a) AC {hy HC {e) ACT {d)} ALVC

494 ® DIGITAL FUNDAMENTALS

5. Determine fppy and fpgy from the oscilloscope display in Figure 11-57. The readings indicate V/idiv
and sec/div for each channel.

+ FIGURE 11-57

lepat

Qutput [~

6, Gate A has fpy = fpyy, = 6 ns. Gate B has tpy = fpgp. = 10 ns. Which gate can be operated ata

higher frequency?

7. If a logic gate operates on a de supply voltage of +35 V and draws an average current of 4 mA, what
is its power dissipation?

8. The variable Jy represents the de supply current from Vi when all outputs of an 1C are HIGH.
The variable fiy represents the de supply current when all outputs are LOW. For a TALS00 IC,
determine the typical power dissipation when all four gate outputs are HIGH. (See data sheet in Fig-
ure 11-6.)

SECTION 11-2 Basic Op ional Ch and P;

9. A certain logic gate has a Vg = 2.2V, and it is driving a gate with a Vyyz, = 2.5 V. Are these
gates compatible for HIGH-state operation? Why?

10. A certain logic gate has a Vg jmey = 045 V, and it is driving a gate with & Ve = 0.75 V. Are
these gates compatible for LOW-state operation”? Why?

11. ATTL gate has the following actual voliage level values: Vo, = 225V, Vi, = 065 V.
Assuming it is being driven by a gate with Voyma: ™ 2.4V and Vog e, = 0.4V, what are the
HIGH- and LOW-level noise margins?

12. What is the maximum amplitnde of noise spikes that can be wolerated on the Inputs in both the HIGH
state and the LOW state for the gate in Problem 117

13. Volage specifications for three types of logic gates are given in Table 113, Select the gate that you
would use in a high-noise industrial environment.

= TABLE 11-3
Gate A 24V 04V v 0DEv
Gale B 33V 0zv 23V nsv
Gate C 42v 0zv 2V LA

WolRIMERN B L B LT e U T S R S L A T TN

14. A certain gate draws a de supply current from a +5 V source of 2 mA in the LOW state and 3.5 mA
in the HIGH state. What is the power dissipation in the LOW state? What is the power dissipation in
the HIGH state? Assuming a 50% duty cycle, what is the average power dissipation?

15. Each gate in the circuit of Figure 11-58 has a fpy and & ipy of 4 ns. 17 a positive-going pulse is
applied to the input as indicated, how long will it take the output pulse 1o appear?

496 = DIGITAL FUNDAMENTALS

SECTION 11-3 CMOS Circuits
21. Determine the state (on or off) of cach MOSFET in Figure 11-61,
22, The CMOS gate network in Figure 11-62 is incomplete. Indicate the changes that should be made.

213, Devise a circudt, using appropriate CMOS logic gates andior inverters, with which signals from four
different sources can be connected to a common line at different times withou: interfering with each

other.
= FIGURE 11-41 +5V +5V +5V +5V
HIGH J 3— HIGH —] ,j_ LOW J a LOW J 1
(ah (&) 5] (]

- FIGURE 11-62

24, Determine which BJTs in Figure 11-63 are off and which are on,

© FIGURE 11-63 +5V «5Y 45V 5V
uvﬂ% ““’@vé ov% ‘sv»—%
{ay ihy i) i

25, Determine the output state of each TTL gate in Figure 11-64.
26. The TTL gate network in Figure 11-63 is incomplete. Indicate the changes that should be made.

FIGURE 11-64

HIGH -
HIGH 33)_ HIGH :@_ HIGH HIGH
(K81 LW HIGH HIGH

HmGH

i by i) tdh

INTEGRATED CIRCUIT TECHNOLOGIES = 497

= FIGURE 11-45

- Ot

SECTION 11-5 Practical Considerations in the Use of TTL

27, Determine the output level of each TTL gate in Figure | 1-66,

28. For each part of Figure 11-67, tell whether each driving gate is sourcing or sinking current. Specify
the maximum cument out of or into the output of the drving gate or gates in cach case. All gates arc
standard TTL.

» FIGURE 11-66

Y v
Open Open
() ihy

HIGH
1GH

¥ FIGURE 11-47 Low
Low

{ah (b

Low
HIGH

=)

29, Use open-collcetor inverters to impl the following logic exf
@ XK=ABC (0 X=ABCD (e) X = ABCDEF
30. Write the logic expression for each of the circuits in Figure 11-68.,

» FIGURE 11-68

498 ® DIGITAL FUNDAMENTALS

SECTION 11-6

= FIGURE 11-6%

31 Determine the minimum value for the pull-up resistor in each cirewit in Figure 11-68 if Jogimay
= 40 mA and Vg = 0.25 V for each gate. Assume that 10 standard TTL unit loads are being
driven from output X and the supply voltage is 5V,

A% A certain relay requires 60 mA. Devise a way to use open-vollector NAND gates with Jog .,
= 40} mA to drive the relay.

Comparison of CMOS and TTL Performance
33, Select the IC family with the best speed-power product in Table 11-1.

M. Determine from Table 11-1 the logic family that is most appropriate for each of the following
requirements:

(@) shorest propagation delay time

{b) fastest flip-Mop toggle raie

(e} lowest power dissipation

{d) best compromise between speed and power for a logic gate

35 D ine the total ion delay from each input to each output for each circuit in
Figure 11-69.

SECTION 11-7

=L — [

Xy
o :
o X
— E >
(a) TAFXX gates (k) TAHCXX gates
c
A
A
&

b
(€} TAAHCXX gates

36. One of the flip-flops in Figure 11-70 may have an erratic output, Which one is it if any and why?

Emitter-Coupled Logic (ECL) Circuits
37. What is the hasic difference between ECL circuitey and TTL circuitry?
3B. Select ECL, HCMOS, or the appropriate TTL series for cach of the following requirements:

{a) highest speed
(b) lowest power

{c) best compromise between high speed and low power (speed-power product)

= FIGURE 11-70

INTEGRATED CIRCUIT TECHNOLOGIES = 499

SECTION 111

HIGH HIGH
¥] 4 —
—_— o
ak ||| i oK |J l.. b
'_.SU a8 P &l p
K K
HE LS
{a) Ll
ax LI
4ns
(]
SECTION REVIEWS
Basics of Digital Integrated Circuits
L. 8§l~small-scale integration; MSI-—medium-scale integration; LSI—large-scale integration;
VLSI—very larg Ie integration: ULSI-—ultra larg; le i i
2. {m) MSI (b} LS fc) 551 {d} VLSI {e) ULST
3. TTL. CMOS, and ECL: CMOS and TTL
4. ta) LS—Low-power Schottky (b) ALS—Advanced LS
(e} F=fast TTL (d) HC—High-speed CMOS
(e} AC—Advanced CMOS (N HCT—HC CMOS TTL compatible
{g) LV—Low-voliage CMOS
5. () TALS04—Hex inverter (b} TAHCO0—Chuad 2-input NAND
{e) TALNVIE—Chuad 2-input ANTY {d} THALSI0—Triple 3-input NAND
fed Td32—0uud 2-input OR (N TAACTT I—Triple 3-input AND

ig) TAAHCO2—Quad 2-input NOR

6. Lowest power—CMOS

T. Six inverters in a package: four 2-input NAND gates in a package

8.ty = 1008 Gy = B s

9. 18pl

10, ey —de supply current for LOW output state; feqr—de supply current for HIGH outpant state

1. ¥ —LOW input voltage; Vi—HIGH input voltage

12 Vi —LOW input voltage: Viyy—HIGH output voltage

500 = DIGITAL FUNDAMENTALS

SECTION 11-2

SECTION 11-3

SECTION 11-4

SECTION 11-5

SECTION 11-6

SECTION 11-7

SECTION 11-8

Basic Op 1 Ch taristics and P

1. Vigy: HIGH level input valtage: Vi : LOW level input voltage; Vey,: HIGH Tevel output voltage;
Vou: LOW level output voltage

2. A higher value of noise margin is better.

3. Gate B can operate at higher frequency.

4. Excessive loading reduces the noise margin of a gate.

CMOS Circuits
1. MOSFETs are used in CMOS Jogic.
2. A complementary output circuit consists of an n-channel and a p-channe! MOSFET.
3. Because electrostatie discharge can damage CMOS devices.

TTL Circuits
1. False, the npn BIT is off.
2. The on state of a BIT s a closed switch; the aff state is an open switch.
3. Totem-pole and open-collector are types of TTL outputs,
4. Tristate logic provides a high-impedance state, in which the output is disconnected from the rest of
the circuit.
_Practical Considerations in the Use of TTL
1. Sink current occurs in a LOW outpur state.
2, Source current is less than sink current because a TTL load looks like a reverse-bizsed diode in the
HIGH state.
3. The totem-pole transistors cannot handle the current when one output tries o go HIGH and the other
is LOW.
4.Wired-AND must use open-collector.
5. Lamp driver must be open-collector.
6. False, an unconnected TTL inpwt generally acts as a HIGH,

Comparison of CMOS and TTL Performance
1. BiCMOS uses hipolar wansistors for fnput and ourpi cireuitry and CMOS in beiween,
2, CMOS has lower power dissipation than bipolar.

Emitter-coupled Logic (ECL) Circuits
1. ECL is faster than TTL.
2. ECL has more power and less noise margin than TTL.

PMOS, NMOS, and EXCMOS

1. NMOS and PMOS are high density.
2. The floating gate is the mechanism for storing charge in an E'CMOS cell,

SUPPLEMENTARY PROBLEMS FOR EXAMPLES
11-1 The gate with 4 05 gy and £y can operale at the highest frequency.
11=2 10 mW
11-3 CMO5
154 1075 W

INTEGRATED CIRCUIT TECHNOLOGIES = 501

118 Frpee, = S020 pA) = 100 pA
Triinsy = S(=0.4 mA) = —20 mA

11-6 Fan-out = 2i)

11-7 X = (ABKCDYWEFNGH) = (A + B)C + DWE + FNG + I

11-8 See Figure 11-71.

» FIGURE 11-71 sy

119 k=970

SELF-TEST
Lidy 2 3 4y Sdd) &b Toie) 8 (e)
9.(c) ML) Il 1@ 13) 04 (@) 1S i)

12

PROGRAMMABLE LoGic Devices (PLDs)

CHAPTER OBJECTIVES INTRODUCTION

Describe PLD, discuss the varicus types, and state how PLDs are So far, you have learnt fixed-function ICs. These ICs cover
programmed 2 wide range of gates, combinational circuits and sequential
. circuits. The fixed-function ICs perform the designated func-

Deabetfata S oty AT tion, which cannot be altered or programmed for perform-

® Describe how a PAL works and explain how the part number ing any other logic function. Another category of 1Cs are
defines its configuration programmable, which can be programmed by a user for per-
a Describe s GAL aenc hovw & citfers from 3 PAL forming variety of functions. Simple programmable logic

devices (SPLDs) such as Programmable Array Logic (PAL) and
Describe basically how SPLDs are programmed Generic Array Logic (GAL) have been discussed in detail. The

R < aL27 Complex programmable logic devices (CPLDs) and the
Desshe bL L it s Caod Gl Field-programmable Gate Arrays (FPGAs) have also been
Describe a basic CPLD introduced.

® Describe FPGA and explain how it diffens from a CPLD

12-1 INTRODUCTION TO PROGRAMMABLE LOGIC DEVICES (PLDs)

You have learned the various categories (851, MSI, LSI, VLSI, and ULSI) of certain fixed-
function logic circuits that are :
In fixed-function devices, a specific Ic
purchased and it can never be changed.

le and you saw some of the packaging configurations.

ction is contained in the 1C package when it is

Another category of logic device is one in which the logic function is programmed by the
user and, in some cases, can be reprogrammed many times. These devices are called
programmable logic devices or PLDs, This section is a brief introduction to PLDs and how
they compare to fixed-function logic devices, In the following chapters, PLDs are covered in
detail.

After competing this section, you should be able o

= Siate the major types of PLDs = Explain the difference between PLDs and fixed-
funetion devices (S51and MSI) = State the advantages of PLDs over 551 and MSI logic
devices (fixed-function) ® Describe two ways in which a logic function can be
programmed into a PLD

PROGRAMMABLE LOGIC DEVICES (PLDs) = 503

In many applications the PLID has replaced the hard-wired fixed-function logic device, You
can expect to see a continued growth in PLDs. However, fixed-function logic is still important
and will be around for a long time but in more limited applications, One area in which fixed-
function logic is very effective is in the laboratory for teaching basic concepts.

One advantage of PLDs over fixed-function logic devices is that many more logic circuits
«can be “stuffed” into a much smaller area with PLDs. A second advantage is that, with certain
PLDs, logic designs can be readily changed without rewiring or replacing components.
A third advantage is that, gcncrallv. a PLD dcﬂgn can be mlplcmtnwd faster than one using
fixed-function ICs once the required is

Types of PLDs
The three major types of pmgmnmable logic are SPLD, CPLD, and FPGA. Each major type

generally has several pecific sub it

SPLDs (simple programmable logic devices) are the least complex form of PLDs. An
SPLD can typically replace several fixed-function 551 or MSI devices and their interconnec-
tions. The SPLD was the first type of prog ble logic available. A few categories of

SPLD are jisted below, some of which are unique to a specific manufacturer. A typical pack-
age has 24 to 28 pins. and one is shown in Figure 12-1.

PAL (programmable array logic)

GAL (generic array logic)

PLA (programmable logic array)

PROM (programmable read-only memory)

» FIGURE 12-1
Typical SPLD package

CPLDs (complex programmable logic devices) have a much higher capacity than SPLDs,
permitting more complex logic circuits to be programmed into them. A typical CPLD is the
equivalent of from two to sixty-four SPLDs. The develoy of these devices followed the
SPLD as advances in technology permitted higher-density chips to be implemented. There are
several forms of CPLD, which vary in complexity and programming cnpnbllll)' CPLDs typi-
cally come in 44-pin 1o 160-pin packages depending on the compl ples of CPLD
packages are shown in Figure 12-2.

» FIGURE 12-2
Typical CPLD packages

() B4-pin PLCC package (b} 128-pin PQFP package

FPGAs (field-programmable gate arrays) are different from SPLDs and CPLDs in their
internal organization and have the greatest logic capacity. FPGAs consist of an amay of any-
where from sixty-four to thousands of logic-gate groups that are sometimes called logic
blocks, Two basic classes of FPGA are course-grained and fine-grained. The course-grained
FPGA has large logic blocks, and the fine-grained FPGA has much smaller logic blocks.
FPGAs come in packages ranging up to 1000 pins or more.

504 = DIGITAL FUNDAMENTALS

| SECTION 12-1
REVIEW

PLD Programming

A logic circuit deaugu far.'l PLD is entered using one of two basic methods: schematic entry or
text-based entry, S a combination of both methods is used.
In the schematic entry method, the software allows the user to enter a logic design using
logic components (e.g. logic gates, flip-flops) and to interconnect them on the computer
diagram.

screen (o form a schematic

In the text-based entry method, also known as languag .*.w... cntry. :he fi allows
the user to enter a logic design in the form of text using a jon 1
(HDL). Several HDLs are available, such as VHDL and Verilog HDL developed for program-

ming PLDs and are widely used.
An HDL that is becoming widely used, especially for programming CPLDs and FPGAs, is
VHDL, a dard developed by the Dej of Defense and adopted by the IEEE

(Institute of Electrical and Electronics Engineers). The latest version of VHDL is IEEE std.
1076-1993. Verilog is another popular HDL for programming CPLDs and FPGAs. In
addition, there are several proprietary HDLs provided by various manufacturers for their

products.

1. What does PLD stand for?

2. What does SPLD stand for?

3. What does CPLD stand for?

4. What does FPGA stand for?

5. Basically, how does a CPLD differ from an SPLD?

6. List two ways in which a logic design can be entered for PLD programming.
7. What does HDL mean?

8. Name two HDLs that were developed for PLDs.

9. Mame an important IEEE standard HDL.

{12520 sIMPLE PROGRAMMABLE LOGIC DEVICES (SPLDs)

Programmable logic devices (PLDs) are used in many ications 1o replace fixed

circuits; they save space and reduce the actual number and cost of devices in a given design.
An SPLD (simple programmable logic device) consists of an array of AND gates and OR
gates that can be programmed to achieve specified logic functions. Four types of devices that
are classified as SPLDs are the programmuble read-only memory (PROM), the programma-
ble logic array (PLA), the programmable armay logic (PAL), and the generic armay logic
(GAL).

After completing this section, you should be able 10

= Explain a basic OR array ® Explain 2 basic AND array @ Describe the structure of a
PROM = Describe the structure of a PLA ® Describe the basic PAL
= Describe the basic GAL - = Discuss the differences between a PAL and a GAL

‘Programmable Arrays
All PLDs consist of ble arrays. A prog ble array is ially a grid of

conductors that form rows and columns with a fusible link at each cross point, Arrays can be
either fixed or programmable. The earliest type of programmable array, dating back to the

1960s, was a matrix with a diode at each cross point of the matrix,

PROGRAMMABLE LOGIC DEVICES (PLDs) = 50%

The OR Array The original diode array evolved into the integrated OR array, which consists
of an array of OR gates connected to a programmable matrix with fusible links at each cross
point of a row and column, as shown in Figure 12-3(a). The array can be programmed by
blowing fuses to climinate selected variables from the output functions, as illustrated in part
(b) for a specific case. For each input to an OR gate, only one fuse is left intact in order to
connect the desired variable to the gate input. Once a fuse is blown, it cannot be reconnected.

 Fusible link

|
=
=i

FEEE T

A

%,

%,

S
T
FRFEEI

(a) Unprogrammed (b Programmed
4 FIGURE 12-3
An example of a basic programmable OR array

Another methed of programming a PLD is the antifuse, wh.Lcll is Llle opposue of lh: fuse.
Instead of a fusible link being broken or opened to prog a open
contact is shorted by “melting” the antifuse material to form a omnecuon.

The AND Array This type of array consisis of AND gates connected to a programmable
'matrix with fusible inks at each cross point, as shown in Figure 12-4(a). Like the OR array,
the AND array can be programmed by blowing fuses to eliminate variables from the output
function, as illustrated in part (b). For each input o an AND gate, only one fuse is left intact
in order to connect the desired variable to the gate input. Also, like the OR array, the AND
array with fusible links or with antifuses is one-time programmable,

=1
=

K 1

T,

) X,
) o &ai>ﬂw

D % P

[

N

T
TR
T

-
] o
e,
x

e

{ah Unprogrammed (h) Programmed
A FIGURE 12-4
An example of a batic programmable AND array

:} N D_x,=m
) > P) -k

:a-u

— Xy = AR

Xy mAR

X,=AB

PROGRAMMABLE LOGIC DEVICES (PLDs) = 507

Generic Array Logic (GAL) The GAL has a reprogrammable AND array and a fixed OR
array with programmable output logic. The two main differences between GAL and PAL
devices are (a) the GAL is reprogrammable and (b) the GAL has programmable output
configurations.

The GAL can be reprogrammed again and again because it uses EXCMOS (electrically
erasable CMOS) technology instead of bipelar technology and fusible links. The block
diagram of a GAL is shown in Figure 12-8.

* FIGURE 12-8

Inipaat | — —= C 1
Block diogram of a GAL - === > Oupun
i Fixed OR
topar 2 [. _
Reprogrammable H array and {5 Output 2

1 AND arruy i programmahle 1

1 . output bogic i

1 i 1

:]]
Inpat [ot b {7 Ohutput

|—l SECTION 12-2 R SR il
REVIEW 1. List four SPLDs.

2. What is the difference between a PLA and a PAL?

3. Describe the differences between a PAL and a GAL?

| PROGRAMMABLE ARRAY LOGIC (PAL)

The PAL is a type of SPLD that is one-time programmable (OTP). As you learned in the last
chapter, the PAL in its basic form is an SPLD with an AND array and a fixed OR array. In
this section, you will learn how PALs are used to produce specified combinational logic
functions and examine a specific PAL.

After completing this section, you should be able to

® Describe basic PAL operation ® Show how a sum-of-products expression is imple-
mented ina PAL ® Discuss simplified PAL logic diagrams ® Explain the three basic
types of PAL output binational logic = Interp dard PAL numbers

= Discuss the PALIGLS

"PAL Operation

The PAL consists of a programmable ammay of AND gates that connects to a fixed array of OR
gates. This structure allows any sum-of-products (SOF) logic expression with a defined
number of variables to be implemented. As you have learned, any logic function can be
expressed in SOP form.

‘The basic structure of a PAL is illustrated in Figure 12-9 for two input variables and one
output although most PALs have many inputs and many outputs. As you know, a programma-
ble array is essentially a gnd of conductors forming rows and columns with a fusible link at
cach cross point. Each fused cross point of a row and column is called a cell and is the pro-
grammable element of a PAL. Each row is connected to the input of an AND gate and each
column is connected to an input variable or its I By using the p or absence
of fused connections created by programming, any combination of input varisbles or comple-
ments can be applied to an AND gate to form any desired product term.

508 = DIGITAL FUNDAMENTALS

» FIGURE 12-9

Basic structure of a PAL

1

P EF &
i

FIEF
e

Impi ing a Sum-of-Products Expression In its simplest form, each cell in a basic AND
my consists of a fusible link connecting a row and a column as represented in Figure 12-9.
When the connection between a row and column is required, the fuse is left intact. When no
connection between a row and column is required, the fuse is blown open during the program-
ming process.

As an example, a simple array is programmed as shown in Figure 12-10 so that the product
term A is produced by the top AND gate, AB by the middle AND gate, and AB by the
borom AND gate. As you can see, the fusible links are left intact to connect the desired

iables or their compl 1o the appropriate AND gate inputs. The fusible links are
opened where 2 variable or its complement is not used in a given product term. The final
output from the OR gate is the SOP expression,

X=AB+ AB + AB

",

'B'q‘ | X = AL+ AR+ AB

",

|

FIGURE 12-10

mll

of a SOP

Simplified Symbols

What you have seen so far represents a small segment of a typical PAL. Actual PALs have
many AND gates and many OR gates in addition to other circuitry and are capable of handling
many input variables and their I Since PALs are very complex integrated circuit
devices, manufacturers have adopted a simplified notation for the logic diagrams to keep them
from being overwhelmingly complicated.

PROGRAMMABLE LOGIC DEVICES (PLDs) = 509

Input Buffers The input variables to a PAL are buffered 10 prevent loading by the large
number of AND gate inputs to whuh a variable or its complement may be connected. An

g buffer prod the of an input variable. The symbol representing the
buffer K:m:ull I-hat produces both I.he variable and its complement on its outputs is shown in
Figure 12-11 where the bubble output is the complement.

AND Gates A typical PAL AND array has an extremely large number of interconnecting
lines, and each AND gate has multiple inputs. PAL logic diagrams show an AND gate that
actually has several inputs by using an AND gate symbol with a single input line representing
all of its input lines, as indicated in Figure 12-11. Multiple input lines are sometimes
indicated by a slash and the number of lines as shown for the case of two lines.

PAL Connections To keep a logic di as simple as possible, the fusible links in a
programmed AND array are indicated by an X at the cross point if the fuse is left intact and by
the absence of an X if the fuse is blown, as indicated in Figure 12-11. Fixed connections use
the standard dot notation, as also indicated.

laput lines
Inprun A A B B

T3 ,

N=AB+Af + AR

term lines.

4 FIGURE 12-11
Simplificd diagram of a programmed PAL

] EXAMPLE 12-1
Show how a PAL is programmed for the following 3-variable logic function:

X = ABC + ABC + AB + AC

Solution The programmed array is shown in Figure 12-12. The intact fusible links are indicated by
small red Xs. The absence of an X means that the fuse has been blown.

510 = DIGITAL FUNDAMENTALS

D
H—[}
!—[}

X = ABC + ABC + AB + AC

A FIGURE 12-12

Supplementary Problem Write the expression for the output if the fusible links connecting input A 10 the op row
and to the bottorn row in Figure 12-12 are also blown. |

! The PAL Block Diagram

A block diagram of a PAL is shown in Figure 12-13. The AND array outputs go to the OR
array, and the output of each OR gate goes to its associated output logic. A typical PAL has
eight or more inputs to its AND array and vp to eight outputs from its output logic as
indicated, where n = & and m = 8. Some PALs provide a combined input and output (O} pin
that can be programmed as either an output or an input. The symbol EE8 means that a pin
can be either an input or an output,

Input | [C2— T ﬂul‘pul I
Input 2 [2—
Tnput 3 23— progrummabic Fied = 0 Ougpan 2
| AND armay ; OR amray |
i i |
H — Clutput L
Tnput o [T5— {2 Outpat m

4 FIGURE 12-13
Block diagram of a PAL

PROGRAMMABLE LOGIC DEVICES (PLDs) = 511

PAL Output Combinational Logic

There are several basic types of PAL output logic that allows you to configure the device for a
spcc:ﬁr.‘ appllcalmn In this chaplcr‘ only the :i.spccls of the output logic related 1o

ional logic fons are I. Additional features are covered later after you
have studied flip-fiops, counters, and registers. Figure 12-14 shows three basic rypes of
combinational output logic with tristate outputs and the associated OR gate. The following are
types of PAL output logic:

= Combinational owpur - This output is used for an SOP function and is usually available
as either an active-LOW or an active-HIGH output.

= Combinational input/eutpur (/0] This output is used when the output function must
feed back to be an input to the array or be used to make the /O pin an input only.

" ngmmab!e polarity outpur This output is used for selecting either the output
or its pl by ing the lusive-OR gate for inversion or

noninversion. The fusible link on the exclusive-OR input is blown open for inversion
and left intact for noninversion.

Tristate coatzol Froen ANDY

gale amay TnpueiCupu §L0F
From AND
e array Charput
{a) Combinasional cutput (active-LOW). An active-HIGH () Combinational tnputfoanpat (active-LOW)
output waeld be shomm without the bubble on the tristate
gase symibol.
Inpuat/Ourpan 11901
() Progmmmable polarity output
4 FIGURE 12-14
Basic types of PAL combinational cutput logic
Standard PAL Numbering

Standard PALs come in a variety of configurations, each of which is identified by a unigue
part number. This part number always begins with the prefix PAL. The first two digits
following PAL indicate the number of inputs, which includes outputs that can be configured
as inputs. The letter following the number of inputs designates the type of output:
L—active-LOW, H—active-HIGH, or P—pmgmmmablc pclamy The one or l.wo digits that
follow the output type is the number of outputs. The fi 2 number is an

512 = DIGITAL FUNDAMENTALS

\ h Eight outputs

Programmable armay logic /
; “Active-LOW output

Ten inputs

In addition, a PAL part number may carry suffixes that specify speed, package type, and
temperature range.

A PAL

The PAL16LE is an ple of a PAL confi ion, and its block di is shown in
Figure 12-15. This particular device has 10 dedicated inputs (1), 2 dedicated outputs (0),
and 6 pins that can be used either as inputs or as outputs. Each of the outputs is active-LOW.

= FIGURE 12-15
Block diagram of the PAL16LE

11 E—]

11—

/e

_| Programmable - [=
15ED— AND army

16—

=10

17—

19—

1 [—

PROGRAMMABLE LOGIC DEVICES (PLDs) = 35i3

I EXAMPLE 12-2
Determine the number of inputs, the number of outputs, and the type of output for each of

the following PAL pant numbers:
(a) PALIZHS (b} PALIGL2 {c) PAL2OPS

Selution (a) 12 inputs, & outputs, active-HIGH outputs
(b} 16 inputs, 2 outputs, active-LOW outputs

{e) 20 inputs, & outputs, programmable polarity outputs

Supplementary Problem Describe a PAL with the part number PAL14H4.

SECTION 12-3 -
l REVIEW 1. What is a PAL?

2. Explain the purpose of a fusible link in a PAL.

3. Can any combinational logic function be implemented with a PALT
4. List theee types of PAL output legic.

5. What does the designation PAL1ZH6 mean?

| BASIC CONCEPTS OF GAL

GAL is a designation originally used by Lattice Semiconductor and later licensed to other
manufacturers. The GAL in its basic form is a PAL with a reprogrammable AND array, a
fixed OR armay, and programmable output logic. In this section, basic GAL concepts are
introduced. The details of GAL 22V10 and 16V8 devices will be discussed in Section
12-6 and 12-7, respectively.

After completing this section, you should be able to

® Describe basic GAL operation ® Show how a sum-of-products expression is imple-
mented ina GAL ® Compare the E'CMOS cell in a GAL with the fusible link cell in a
PAL = Define OLMC and explain its purpose ® Interpret standard GAL numby

GAL Operation

The GAL basically consists of a reprogrammable amray of AND gates that connects (o a fixed
armay of OR gates. Just as in a PAL, this structure allows any sum-of-products (SOP) logic
expression with a defined number of variables to be implemented,

The basic structure of a GAL is illustrated in Figure 12-16 for two input variables and one
output although most GALs have many inputs and many owtputs, The reprogrammable array
is ially a grid of d forming rows and columns with an electrically erasable
CMOS (ETMDS] cell at each cross point, rather than a fuse as in a PAL. These cells are
shown as blocks in the figure.

514 = DIGITAL FUNDAMENTALS

A FIGURE 12-1¢

Basic E'CMOS structure of a GAL

» FIGURE 12-17

-
b

EiCM

7

3 z z
HHIHE
HEHH]

‘

i {2

=D

Each row is connected to the input of an AND gate, and each column is connected to an
input variable or its mmpl:m:nl By pmgrammmg each E'CMOS cell to be either on or off,
any bination of input variables or can be applied to an AND gate to form
any desired product term. A cell that is m i its ding row and
column, and a cell that is off disconnects the row and column, The cells can be eleclnc:ﬂly
erased and reprogrammed. A typical E*CMOS cell can retain its programmed state for
20 years or more. See Section 11.8 for a discussion of how an ECMOS cell works.

Implementing a Sum-of-Products Expression As an example, a simple GAL array is
programmed as shown in Figure 12-17 so that the product term AB is produced by the top
AND gate, AB by the middle AND gate, and AB by the bottom AND gate. As shown, the
E*CMOS cells are on to connect the desired variables or their pl to the
appropriate AND gate inputs, The E'CMOS cells are off where a variable or its complement
is not used in a given product term. The final output from the OR gate is an SOP expression.

GAL implementation of 2 SOP

X=AB+AB+AB

HEIHE RIS R R
BRI IHEIHEIHE)

HEIEIHE R

516 = DIGITAL FUNDAMENTALS

Ingest | [t lapuaOutpat (1400 |
Input 2 [E2—

Input 3 [[— ECMOS £ InputOutput (10 2

programmakbile
AND array

Tnput [—| Input Ot (10) m

A FIGURE 12-19
Block diagram of a GAL

Standard GAL Numbering

GALs come in a variety of configurations, each of which is identified by a unique part
number. This part number always begins with the prefix GAL. The first two digits following
the prefix indicate the number of inputs, which includes outputs that can be configured as
inputs, The letter V following the number of inputs designates a variable-output configuration.
The one or two digits that follow the output type is the number of cutputs. The following
number is an example.

GAL16VE

A 5

/ //? \\Eighimllr""‘

Varigble-output configuratio.

Generic array logic

Sixteen inputs

I EXAMPLE 12-4
Determine the number of inputs and the number of outputs for each of the following GAL

part numbers:

() GALIOVE (b} GAL22VIO
Solution (a) 20 inputs, 8 outputs

(b} 22 inputs, 10 outpuis

Supplementary Problem Describe a GAL with the part number GALIEV10,

SECTION 12-4 g
| REVIEW 1. What is a GAL?

2. Explain the purpose of the E‘CMOS cell in a GAL.
3. Can any combil | logic function be impl d with a GAL?

4. What is the OLMC?

PROGRAMMABLE LOGIC DEVICES (PLDs) = 517

ROGRAMMING OF SPLDs

So far, you have learned about the basic internal organization (architecture) of some types of
SPLDs, including the PAL and the GAL. In this -.eulun, the general concept of SPLD pro-
b ing generally falls into two

: the conventional method and the in- \ywlcrn programming (15F) method.
From a ml’lu-.m. a!.lmipuml a lu;g:s. design 1s programmed into a PLD using either schematic
entry soft language (HDL) software. or a combination of both.

After completing this section, you should be able o

= Discuss the requi for ionall ing an SPLD = Describe a
JEDEC file = Discuss the requirements for in-system programming (ISP) of an SPLD
® Discuss the JTAG standard

C ional Progr ing of an SPLD
SPLDs arc o ionally prog < using p i fit L@ P and a
device programming fixture (programmer) 1o the T The f has a
socket that accepts the SPLD kage. With ional ing, an SPLD is

programmed while plugged into the socket of the programmer, as |1lLulr.Llod in Figure 12-20.
This type of programming is for SPLDs that have not yet been installed on a printed circuit
board.

The Computer Any PC that meets the software and programmer specifications can be used.
These specifications normally include the type of microp on which the puter is
based. the amount of memory, and the operating system.

PFIGURE 12220

Typical configuration for
comventional PLD programening

omputer nunning
HDL softwan
PLD package
+ plugged into
socket

The Seftware The software packages for SPLD programming are called logic compilers.
Several software pac ¢ available for programming SPLDs. All of these software
packages process and sy the logic design entered by a specified method, convert the
entered data into an intermediate file, and then generate a final output file called a JEDEC file
{also known as a coll map or fuse map). Also, the software provides for simulating and
debugging a logic design before the design is finalized.

A key feature of the software package is the method(s) for entering a logic design. Most
software packages provide several entry options for 1mplernenl:nmn of a logic design in an
SPLD. Three text-based design entry methods are B quation, truth table, and state
diagram. Some software also allows for schematic entry.

518 = DIGITAL FUNDAMENTALS

& —

The Py The p is d to the puter and the SPLD is inserted
into |hc programmer soclu:t “thh is usually a ZIF socket (zero insertion force socket). The

p has a softy driver program that reads the JEDEC file generated by the
il and itto i ions for applying required voltages to specified

pins “on the SPLD in order to program the specified logic design into the SPLD. All SPLD
f and p dless of the f conform to a standard for

generation ul’ Ih: JEDEC file established by the Joint Electronic Device Engineering Council,

The Programming Process

The general flow chart in Figure 12-21 shows the seq for the
of an SPLD. First, the logic circuit is designed and expressed in terms of Boolean equations,
truth tables, logic schematic, or other acceptable form, and the software is loaded into the

Ccomputer.

Dichug

Compiler Compiler creates
Dc:,s_ip.n_l]x_ rocesses input JEDEC fike (fuse map)

logic circuit file and

minimiees lagic

Edit

Enter design into = e

e by Design simulation
creating an mpat
isource) fike

Programmer “bums™
¢ Compiler penerates.
Tuse map into SPLD 3 o file
amay
No
Yes

4 FIGURE 12-21
Flow chart of an SPLD g g

Entering the Design The logic design is entered into the computer by creating an input or

source file. Typically, some preliminary information is entered, such as user’s name, company,

data, and deseription of the design. Then, the type of SPLD, the input and output pin numbers,

and variable labels are entered. Finally, the logic function{s) is entered in the form of a

Boolean equation, truth table, schematic diagram, or the like. Any syntax errors or other emrors

made in entering data into the input file are indicated and must be d. Syntax is the
ibed format and bology used to describe a category of functions.

R g the Sofi The il and lates the input file and
minimizes the logic. The logic design is then simulated using a set of hypothetical inputs
known as fest veciors, This process effectively “exercises™ the design in software to determine
1I' it works properly before the SPLD is actually programmed. If any design flaws are

d during sof imulation, the design must be debugged and modified to correct
the flaw.

PROGRAMMABLE LOGIC DEVICES (PLDs) = 519

Once the design is finalized, the compiler generates a documentation file, which includes
1he final logic equations, the JEDEC file, and if desired a pinout diagram of the SPLD. The

file ially provides a “hard copy™ of the final design,
Programming the Device When the design is finalized, the compiler creates a fuse map
(JEDEC file) and downloads it to the prog The fuse map tells the programmer which

fuse links to blow and which to leave intact or, in the case of a GAL, which E'CMOS cells to
turm on or off. The programmer uses its own software driver program to pattem the SPLD
according to the fuse map.

[In-System Programmable (ISP) SPLDs

Some SPLDs have ISP capability that allows them to be programmed after they are installed
on a circuit board using a standard 4-wire interface specified by IEEE Std. 1149.1, called the
JTAG (Joint Test Action Group) sumdmd.a JTAG cable is connected from the parallel port of
the [running the prog 1 to a socket on the PC board that is connected

to the special JTAG pins of the SPLD, 'l'hl.s configuration is shown in Figure 12-22.

= FIGURE 12-22

Typical configuration for in-system
programming of a PLD

Compuler maning ITAG compliant
HDL saftware Lui!tinhzﬁ:!
cable

In-system programmable devices provide an excellent way to change a circuit design or
upgrade a system after it is already in use in the field. An upgrade disk can be used 10
reprogram a PLD directly on the circuit board via computer or by modem.

The signals for the JTAG interface standard are as follows:

® TDI—Test Data In. Data, instructions, and addresses are sent to the PLD on this line.
= TDO—Test Data Out. Data are returned from the PLD on this line and compared

against expected data.
» TCK—Test Clock. This signal provides timing for the in-system progs ing process.
®# TMS—Test Mode Select. The TMS line controls the transfer of data, instructions, and
addresses.
Figure 12-23 shows block diag: for a i GAL and an ISP

GAL. Notice that the only difference is the programming lagu: with the four JTAG interface
lines.

PLID alresdy installed

08 8 system circuit board
_ and interconnected with

other devices on the boand
{not shown)

PROGRAMMABLE LOGIC DEVICES (PLDs) = 521

Block Diagram of the GALZZV10

The GAL22V 10 contains twelve dedicated inputs and ten input/outputs (I/0s), as shown in
the block diagram of Figure 12-24. This device is available in either a 28-pin PLCC (plastic
chip carrier) or a 24-pin DIP (dual in-line package), as shown in Figure 12-25. This device
is also available in a low-voltage (3.3 V) version, the GAL22LV10, and in in-system
programmable versions, the ISP GAL22V 10 and the ISP GAL22LV 10,

"

i) DIP

(@) PLOC
4 FIGURE 12-24 4 FIGURE 12-25
GALZZVID block disgram GALZZVID package disgrams

The Output Logic Macrocells (OLMCs)

As stated in the discussion of GALs in Section 12-4, an OLMC contains programmable logic
circuits that can be configured either for a combinational cutput or input or for a registered
output. In the registered mode (discussed below), the output comes from a flip-flop.

522 = DIGITAL FUNDAMENTALS

As indicated by the notation in the block diagram of Figure 12-24, of the ten available
GAL2Z2V10 OLMCs, two have eight product terms (lines from the AND array to the OR
gate), two have ten product terms, two have twelve produet terms, two have fourteen product
terms, and two have sixteen product terms. Each OLMC can be programmed for either an
active-HIGH or an active-LOW output. Also, each OLMC can be programmed as an input,

Logic Diagram A basic logic diagram for the GAL22V10 OLMC is shown in Figure 12-26.
The inputs from the AND gates to the OR gate vary from ten to sixteen, as mentioned. The
logic inside the shaded box consists of a flip-flop and two multiplexers.

The 1-of-4 multiplexer connects one of its four input lines to the tristate output buffer
based on the states of two select inputs, 5, and 5. The inputs to the 1-of-4 multiplexer are the
OR gate output, the complement of the OR gate output, the flip-flop output, and the comple-
ment of the flip-flop output. The 1-0f-2 multiplexer connects either the output of the tristate
buffer or the flip-flop back through a buffer to the AND array based on the state of §,. The
select bits, 5, and 5, for each OLMC are programmed into a dedicated group of cells in the
array.

The four OLMC configurations are:

= Combinational mode with active-LOW output
» Combinational mode with active-HIGH output
= Registered mode with active-LOW output

= Registered mode with active-HIGH output

—D
From | [
programmable < lof4 | - o
amey multiplexer
— Hipfop
B gl
i3 Sy 8y
o 1-0f-2 [8y o
progrmmabi g
5 OLMC

A FIGURE 12-26
The GALZZVI0 OLMC

The Combinational Mode

The modes in the GAL22V10 are determined by the §, and 5, bits, which are controlled by
p ing. For the combinational mode, $,5, = 10 or $,5y= 11.

When S, = 0 and §, = 1, the multiplexer selects the OR gate output. The effective logic
paths of the OLMC are shown in Figure 12-27(a) where the output polarity is active-LOW
because of the inversion of the tristate output buffer. When 53 = 1 and §; = 1, the comple-
ment of the OR gate output is selected, and the effecrive logic paths of the OLMC are as
shown in part (b). The output is active-HIGH because of the double inversion (complement of

PROGRAMMABLE LOGIC DEVICES (PLDs) = 525

— — e R ———
| D ine the output ion of an OLMC in a GAL22V10 for the product terms from

the AND array and the select bits as shown in Figure 12-30.

D HIGH 1

i (L8]
i Mol
s,|-1
A FIGURE 12-30
Solution The OLMC is configured for an active-HIGH inational output; theref the SOP

expression is
X = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
Supplementary Problem Write the SOP expression for the output if 5 = O and §, = 1.

The GAL22V10 Array

The disgram for the GAL22VI0 in Figure 12-31 is similar to the block diagram. shown in
Figure 12-24, except that details of the programmable AND array are shown.

The GAL22VI0 prog array is ized as 22 input lines and complements
crossing 132 product term lines. There is a programmable E'CMOS cell at each of the 5808
intersections, Each cell can be programmed in the on state 1o connect an input variable or its
complement 1o a product term line,

A single line represents the product term line in the diagram of Figure 12-31. However, in
the GAL22VI0 there are actually 44 lines 1o each AND gate. So, each product term line con-
sists of 44 AND gate inputs, one for each input line and its complement. The numbers shown
for each product term line are the beginning cell numbers for the 44 cells associated with that
line. The number in cach OLMC for Sy and S, are the cell numbers in the array into which the
bits are programmed. These twenty special cells (SB08 through 5827) are not shown in the
array diagram.

Figure 12-32 shows details of the programmable array for the first OLMC section. The
OLMC has a capacity for eight product terms that can be used in an SOP function. One
product term is reserved for the tristate control, and one product term is used for a reset
function in the registered mode for all of the OLMCs. The latter product term is called a
global function because it is common to all OLMCs.

526 ® DIGITAL FUNDAMENTALS

Pisi numbers:

mr
,/,PI..CC

i3

4y Ha

145) Attt

5 T

s
6(7) —

w1z

Pl e r—.

0012y f— —
- llﬁiﬁiﬂﬁan
13 el

A FIGURE 12-31

I
1 Igugmiﬂgﬁ

Asynchromous reset
ito all regissers)

| [oscn
=
mos

i

1

preset
o all registers)

GALZZVI0 array diagram

pilra))

22426}

21425

2hi24)

19423)

1521

1702

1h19)

15418)

11m

13116}

PROGRAMMABLE LOGIC DEVICES (PLDs) = 527

Imput lincs

— RnnmsllﬂLMCl

Tothe rest of the amay

& FIGURE 12-32
‘Organization of the programmable array showing one OLMC portion

!Implementing an SOP Function

As

1, acell is p

1 to the on state where a variable or its complement is part

of a product term. Programming a cell to the on state simply connects an input line to a
product term line. Each AND gate in the ammay produces one product term. When all of the

output, either

input variables that are connected to an AND gate are HIGH, the output of the AND gate is
HIGH.

The product terms from all of the AND gates for a given OLMC are ORed to form the
sum-of-products function. TI\: OLMC select bits are programmed 1o route the OR gate

o the output pin.

With the GAL22V10, up lo ten sepmle SOP functions can be programmed, the largest of

which can contain sixteen product terms. If an SOP expression with more than sixteen terms.
is required, two OLMCs are necessary. The OR gate output of one OLMC is fed back to the

array and connected into the other OLMC by programming.

| EXAMPLE 12-6
Show how the following 6-variable SOP function is implemented with the GAL22V10.

X = ABCDEF + ABCDEF + ABCDEF + ABCDEF + ABCDEF + ABCDEF + ABCDEF

Solution The programmed portion of the array with the associated OLMC is shown in Figure 12-33,

03

The rest of the array remains unused in this case. The Xs represent E'CMOS cells that are
programmed to the on state.

[1 | Y f
| 11— Reset to al] OLMCs

A FIGURE 12-33

530 ® DIGITAL FUNDAMENTALS

8332332337

g
1
LK
von

T 5 3
23838

8
1
GND|
VOE
vog
voQ

Vop: pin 20
GND: pin 10

(2) ®
A FIGURE 12-35
GAL16VS block diagram and packaging

FLCC

* TABLE 12-1

PROGRAMMABLE LOGIC DEVICES (PLDs)

INTRODUCTION TO CPLDs

= 533

So far, you have leamed about SPLDs, particularly the PAL and the GAL. In this section,
another class of programmable logic devices, called CPLDs, is introduced. A CPLD (Com-
plex Programmable Logic Device) is a logic device that consists of multiple SPLDs inter-
connected on a single chip. CPLDs can be used 1o impl large logic ions, includ-
ing shift registers,

After completing this section. you should be able 10

® Describe a basic CPLD » Explain the purpose of the logic array block (LAB)
= Explain the purpose of the programmable interconnect array (PIA) - ® Discuss a basic
macrocell ® Deseribe the MAX 7000 CPLDs

A CPLD basically consists of multiple groups of PAL/GAL-like arrays with programma-
ble interconnections, as shown in the general block diagram in Figure 12-39. Each PAL/GAL
group is called a logic array block (LAB), function block, or some similar term depending on
the particular device. Each logic array block contains several PAL/GAL-like ammays called
macrocells. Each LAB can be interconnected with other LABs or to other UOs (inputfoutput)
using the programmahle interconnect array (P1A) to form large complex logic functions. Like
the PAL or GAL, the CPLD is based on a s f-products (SOP) archil

!

Logic Tiad] B d Logic
vo=H [hog [E=P O
(LAB) = €= (LAB)

Logic .h ﬁ. Logie
o=l o bk, (=P
(LAB) = = Lip)

T

i

i

1

Logic P # Logic
vod=hl i bk (=P w0

(LAR) S Y]

.
Progranutable inerconnect irray (PIA)

4 FIGURE 12-39
Basic diagram of » CPLD

Macrocells

Each logic ammay block in a CPLD contains several macrocells, as shown in Figure 12-40.
CPLD architecture varies from one manufacturer to another, but generally there are from 32 1o
several hundred macrocells in one LAB. A typical macrocell has an AND array, a product-
term select matrix, an OR gate, and a programmable register section, A simplified diagram of
a typical CPLD macrocell is shown in Figure 12—41. Notice that the logic is similar to the
OLMC logic in a PAL/GAL amay.

534 = DIGITAL FUNDAMENTALS

» FIGURE 12-40 Logic amray block (LAB)
Basic bogic amay block in a CPLD |
i I
+
s
i
i
1
10 | Macrocell n |
?i»:mumb‘le:mmmcl:ims;u wher
Boghc array blocks and 105 in the CPLD
Proclsct-term
Expander [npus Gilohal Clear
from other macroeells Gilobal Clock
W >

_____ | Y.

Combinationsl Reghstened

4 s cuut
| [) {

:
i

cLg | Flip-Rop

Froduct-term

Product-erm
Programmable Expander Output
interconnections 1 other nacrocells

4 FIGURE 12-41
Basic CPLD macrocell

Each macrocell has a fixed number of AND gates that feed into a product-term selection
matrix, where product terms can be selected and applied 10 an OR gate. Additionally, product-
terms expander inputs from other macrocells allow more product terms to be selected in addi-
tion to those from the macrocell AND array. Also, a product-term expander output provides
any selected product term to other macrocells in the LAB or in other LABs via the program-
mable interconnect array (PIA).

The OR gate provides an SOP output through programmable select blocks to the VO or o a
nnp—rlap ln lhis pm::ular 1mplemnumm there are three programmable selects, which are

ble select block provides either a
global -:Iocl: or a product term to be used as the clock input for the flip-flop. A second

PROGRAMMABLE LOGIC DEVICES (PLDs) = 535

ble select block provides either a global clear or a product-term clear to the Oip-
ﬂnp The third pmgra.mm:.hle select block routes either the output of Ihe OR gate or the
output of the flip-flop to the /0. The OR gate provides an SOP bi 1) cutput, and
the flip-flop provides a registered output.

In CPLDs, the term registered is used in reference to the flop-flop and its associated
circuits. The flip-flops in a CPLD can be used for implementing shift register or counter logic.
Other flip-flops can be implemented using gate logic as was discussed in Chapter 8. The
determination of whether to use the macrocell flip-flop or a gate-implemented flip-flop is
made by the programming software.

Programmable Interconnect Array (PIA}

The programmable interconnect array (PIA) consists of conductors that run throughout the
CPLD chip and to which connections from the macrocells in each LAB can be made. By
using the PIA, any macrocell can be connected to other macrocells within the same LAB, to
macrocells in other LABS in the device, or to other 1/0s.

Connections to the AND gates or other el ina 1 are sccomplished by
connecting a line in the programmable interconnect array 10 an AND gate input or other
magcrocell line. Most CPLDs use EXCMOS technology to make the ions. In E'CMOS,

a transistor between two lines is programmed to the on state to form a connection and in the
aff state for no connection. The basic idea of this connection method is illustrated in
Figure 12-42.

Mascrocel]
ar L lise

P1A line PLA line
A FIGURE 12-42

Basic E'CMOS interconnection technolog

A Specific CPLD

Several companies, including Altera, Xilinx, Lattice, Cypress, and others provide CPLDs,
Each company has its own approach to CPLD architecture, but all have one thing in
common—ihey are based on PAL/GAL SOP logic arays. Slmc we cannot cover all ufl-hc
devices that are available, a specific CPLD family is duced as a ref

Altera’s MAX 7000 family of l’_‘PLDslsusedbecauselnsoueofﬂ:empop\dlrondw
market. Altera also has other CPLD families that differ somewhat in architecture. Some
CPLDs must be programmed in a special fixture; others, such as the MAX 70005, are in-sys-
tem programmable (ISP). 1SP means that a CPLD can be programmed while mounted on a
system printed circuit board.

The MAX 7000 family of CFLDs includes several variations ranging from 2 1o 32 logic
array blocks each with 16 macrocells. These CPLDs can bc pms.rmd. and erased up to
100 times. They are supported by the 1 s d which are
p.'u:kascs that include schcmnuc entry, text entry, and wavl:form dcugn entry as well as

lation and timing analysis, and device programming.

Fxgum 1243 shows the general block diagram for the MAX 7000 family. The logic array
blocks (LABs) each consist of sixtcen macrocells, and the LABs are linked together by the
programmable interconneet array (PIA). The PIA is fed by all input/outputs (['Os) and the
macrocells, The arrows with slashes indicate numbers of parallel lines. Each macrocell has the
following inputs:

PROGRAMMABLE LOGIC DEVICES (PLDs)

INTRODUCTION TO FPGAs

= 537

In Section 12-8, the CPLD was introduced. Now, another major cluss of programma-
ble logic devices, called the field programmable gate array (FPGA), is introduced.
Recall Iha.tCFLDsotmswl essentially of multiple PAL/GAL-type logic blocks Ihal a:c
linked by bl i CPlbsm" d on SOP E-p

logic. Mthwgh there are some similaritics, FPGAs are distinctly different from
CPLDs in terms of theirarchitecture and generally offer a much higher logic capacity.

After completing this section, you should be able to

® Deseribe a basic FPGA ® Deseribe the FPGA logic block = Discuss the FPGA
logic element = Explain how a look-up-table (LUT) works

Although there are many variations of the basic archi the FPGA basically consists
of an array of logic blocks with programmable row and column interconnecting channels
led by pr hle 1/O blocks, as shown in Figure 12-44. Many FPGA
architectures are based on a type of memory called an LUT (look-up table) rather than on
SOPANDIOR arrays a8 CPLDs are. Another approach found on some FPGAs is the use of

i o fogic functi which was discussed earlicr in this chapter.
Input/ Dutput
bk
S e L
§ A ¥ Row
Logic Logic Logie Logic interconnect
block Hlock: hilock block: -
e
Logic Logic Logic Logic
hlock block block block
T4 [T1] {04
"
" . H
= - H
wjer O
Logie Logic Logic Logic
black block block block

Column
interconnect

Bailc bkx‘k dnsnm of an m

538 = DIGITAL FUNDAMENTALS

» FIGURE 12-45

{The Logic Block

Each logic block in a generic FPGA contains several logic elements, as shown in
Figure 12-45, As mentioned, FPGA architecture varies from one manufacturer to another, but
generally there can be well over ten thousand logic elements in a single chip.

Logie block

Basic logic block in an FPGA .~ Column

Data from
programmable
interconpects

A FIGURE 12-46

4 ||
|
i

Lagic element 1 interconmects

w

Logic

element
|
i
i
element

§

- Row
interconnects

The Logic Element A simplified diagram of a typical FPGA logic element is shown in
Figure 12-46. Notice that it contains an LUT, associated logic, and a flip-flop. In this case,
each logic element contains a 4-input LUT that can be prog: d as a logic i
generator. nmbeusedmmwesop functions or logic functions such as adders and

When gured as an adder, the carry in and carry out allow for adder
cxpmou. Using the cascade logic, an LUT can be expanded by cascading with LUTs in
other logic elements. The programmable selects let you choose either combinational functions
from the LUT output or registered functions from the flip-Mlop output.

Cany in
| e P o
/ ~
/ i
= "
Cateade Treset interconmect
LuT logic

Freset Select

Carry cut Cascade oat

A simplified typical FPGA logic element

PROGRAMMABLE LOGIC DEVICES (PLDs) ® 541

mﬁﬁﬂﬂﬂﬂﬂ

- =
Tl
P

iiiiiiii

A FIGURE 12-50
Simplified FLEX 10K block disgram showing the basic architecture

specified logic functions. This particular LUT can g any 4-variable logic function
bmmuhsfmhwuﬁeh&hgi:elmk&hmhﬁmﬂ—&lemnm
addition to the LUT, there is the carry chain and the cascade chain. Also, notice that the LE
can be connected to the local interconnect or the main i (row and col with
the select logic.

MMARY

PROGRAMMABLE LOGIC DEVICES (PLDs) ® 543

® Basic types of SPLDs (simple programmable logic devices) are PAL (programmable amay logic),
GAL (generic ammay logic), FLA (programmable Jogic array), and FROM (programmable read-only
memory).

® Classifications of SPLDs are PROM, PLA, PAL, and GAL, as shown in Figure 12-53.

Input | [T— - I Ouput 1 Input 1 52— — 2 oupun 1
s |
| H
lopat 2E2— H , 2] bt |
! - 2 v Y
i AND wray ! O prray m"fm' ' AN wray OR array ‘"‘,P"' =
st [] N {0 Ouputn linprt m [T] {75 Output m
{a) PROM ib) PLA
Input | [T5— _— = Output 1 Input | [5— _— {0 Output 1
i H
Inpat 2 [T5— t Fixed OF. Tnput 2 [T— ! Tined OR.
' mm 1 amayned [—ES Ourput 2 ' | i amyond L0 Output 2
' | utpelogie | i '
H | | : outpat logse !
H } | i
Input n [T—] - {0 Oustpust —1 5 Output
c) PAL () GAL

& FIGURE 12-53

= PALs are one-time programmable (OTP).

PALs can produce any sum-of-products logic function limited only by the number of variables,

A PAL consists of a programmable AND array and a fixed OR array with programmable output
logic.

® The generic array logic (GAL) consists of a reprogrammahble AND array, a fived OR array, and pro-
grammable output logic.

® A conventionally programmable SPLD requires a computer, HDL compiler software, and a pro-
gramming fixture (programmer).

= An in-system programmable (I5P) SPLD requires a computer, HDL compiler software, and a JTAG
interface cable. Also, the circuit board’s 15P SPLD must be JTAG compatible.

GALs can emulate most types of PALs.

An OLMC (output logic macrocell) contains programmable logic circuits that can be configured

either for a combinational output or input or for a registered output.

= An OLMC (Output Logic Macrocell) can be configured for either of two modes: the combinational
mode or the registered mode.

= In the OLMC registered mode, the output comes from a D flip-flop.

® A CPLD is a complex programmable logic device.

® A CPLD consists of logic array blocks with programmable interconnections,

544 = DIGITAL FUNDAMENTALS

Angwen are at the end of the chapter.

L ACPLDisa
(a) CMOS programmable logic device {b) Capacitive programmable logic device
(e} Complex programmable logic device (d) Complementary process latching device

Z VHDLisa
(a) logic device (b} PLD programming language
(c) computer language (d) very high deasity logic

3. The types of SPLDs do not include
(a) GAL (b) PROM (c) RAM (d) PAL

4. A GAL has

(#) areprogrammable AND ammay, a fixed OR armay, and programmable output loghe
(b) a fixed AND array and a programmabie OR armay
{c) one-time programmable AND and OR arrays
{d) reprogrammahle AND and OR arrays

5. An SPLD that has a programmable AND array and a fixed OR array isa
(a) PROM (b) PLA () PAL (d) GAL

6. A connection between a row and column in a PAL array is made by
(a) blowing a fusible link
(b} leaving a fusible link intact
(c) connecting an input variable to the input line
{d) connecting an input variable to the product term line

7. The device number PAL14H4 indicates
{a) a PAL with fourteen active-HIGH outputs and four inputs
(b} a PAL that implements fourteen AND gates and four OR gates
(e) a PAL with fourteen inputs and four active-HIGH outputs
(d) who the manufactorer is

8. A GAL is different from a PAL because
{w} 2 GAL has more inputs and outputs
(b) a GAL is implemented with a different technology
(e} a GAL can replace several different PALs
(d) a GAL can be reprogrammed and a PAL cannot
(#) all of the above answers
(N all except answer (a)
() all except answer (¢}

9. The reprogrammable cells in a GAL array are
(a) TIL (b) E'CMOS (c) ECL () bipoler fuses

10, OLMC is an acronym for
(a) Cutpui Logic Main Cell
(b) Optimum Logic Multiple Channel
_{¢) Owtput Logic Macrocell
{d) Odd-parity Logic Master Check
11. Two ways in which 2 GAL output can be configured are

(@) combinational and 'O
(b) simple and complex
(€} fixed and variable
(d) combinational and registered

PROGRAMMABLE LOGIC DEVICES (PLDs) = 545

12. The device number GAL22Y 10 means that
(@} the device has 22 dedicated inputs and 10 dedicated outputs
{b) the device has 22 inputs including dedicated inputs and U'Os and 10 outpots either dedicated or
Vs

(e} the device has a variable number of inputs from a maximum of 22 10 a minimum of 10
13. To conventionally program an SPLD, you need a
(m) special fixnure
(b} special fixure and a master PLID that has been preprogrammed at the factory
(e} computer and a programmer
{d) computer, a programmer, and HDL software
(€} computer, a programmer, and BASIC software
14, ISP stands for
(a) In-System Programmable
b} Integrated System Program
{c) Integrated Silicon Programmer
15, The GALZIVI0 has
(@) 10 inputs and 22 oatputs
(b) 22 dedicated inputs and 10 outputs
{c} 12 dedicated inputs and 110 dedicated cutputs
{d) 12 dedicated inputs and 10 outputs, any of which can be an input
16. The GAL22LV 10 operates on a de supply voltage of
(m) 5V b) 10V (c) 3.3V (dy 1.2V
17, OLMC stands for

(a) output logic modular circuit {h) cutput hogic macrocet]

{c} outpat laich memory cell (d} overall logic matrix circuit
1B, The three states of a tristate output buffer are

in) HIGH, LOW, high impedance {b) HIGH, LOW, ground

(e} HIGH, LOW, in between fd) Right, left, center

19. The OLMC of the GAL22V 10 contains
{a) one OR gate, one Nlip-flop, two maltiplexers.
(b} one OR gate, one Nip-Mip, one multiplexer
{e) onc AND gate, ane latch, two maltiplexers
{d} one OR gate, onc flip-flop, two decoders
20. The GALIGVE has
{a) 16 dedicated inputs and 8 cutputs
(b) 8 dedi inputs and § inp
(e} & inputs and 16 outpats
(d) 16 inputfoutputs and § outpuls
21, A ypical OLMC consists of

(&) gates, multiplexers, and a flip-flop (b} gates and a shift register
(e} a Gray code counter (d} a fixed logic amay
22 ACPLDIsa
{a) CMOS PLD (b} complex PLD
{c} complementary PLD {d) capacitive PLD
23. A CPLD contains
(m) shift registers (b} programmable interconnections

(e} logic amays (d) answers (b) and (¢)

546 = DIGITAL FUNDAMENTALS

4. FPGA stands for

{a) fast propagation gale array b} field presettable gate application
(e} ficld programmable gate armay (d) file programmable gate array
PROBLEMS Antwen to odd-numbered problems are at the end of the book.
SECTION 12-1 Introduction to Programmable Logic Devices (PLDs)

1. Which of the following acronyms do not describe a PLD?
PAL, GAL, SPLD, ABEL, CPLD, CUPL, EPLD, EEPLD, FPGA
2. What do each of the following stand for?
(m) SFLD (b) CPLD (c) HDL (d) FPGA {e) GAL
SECTION 12-2 Simple Progy ble Logic Devices (SPLDs)
3. In the simple programmied AND array with fusible links in Figure 12-54, determine the Boolean
output expressions.

» FIGURE 12-54 A B B

e
|)
o D

4. Determine by row and column number which fusible links must be blown in the programmable
AND array of Fguic 12-55 1o implement each of the following product terms: X, = ABC,
Xy = ABC, X, = ABC.

b
X

%,

= FIGURE 12-55

TFEEEFEER

FEFFFFEEE

SR
11

e
FEFFFFEE
P

PROGRAMMABLE LOGIC DEVICES (PLDs) ® 547

SECTION 12-3 Programmable Array Logic (PAL)

5. Determine the Boolean output expression for the simple PAL shown in Figure 12-56, where the Xs
represcnt intact fusible links.

> FIGURE 12-56

6. Show how the PAL-type array in Figure 12-56 should be programmed in order to implement cach
of the following SOP expressions. Use an X to indicate an intact fuse. Simplify the expressions, if
necessary. 1o fit the PAL-type armay shown,

(a) ¥ = ABC + ABC + ABC
(b) ¥ = ABC + ABC + ABC + ABC

7. Inerpret each of the PAL device numbers.

(a) PALIGL2 (h) PALIZH6 (e} PALIOPE (d) PALISRG

8. Explain how a programmed polarity ouput in a PAL works,

SECTION 12-4 Basic Concepts of GAL
9. Determine the output expression for the GAL type array shown in Figure 12-57. The Xs represent
an on cell,
10. Show how the GAL type amay in Figure 12-57 should be d in order 1o impl each
of the following expressions. Use Xs to indicate on cells, Modily the expressions, :!’necessary
(a) X = ABC + ABC + AB + BC M X=(A+B+OA+8H

» FIGURE 12-57 A i B

B c
|

@%@Q

SECTION 12-7

SECTION 12-1

SECTION 12-2

SECTION 12-3

PROGRAMMABLE LOGIC DEVICES (PLDs) ® 549

The GAL16VE

28. Describe a GALIGVE in wrms of
{u) the number of dedicated inputs
(b} the number of L'0s
1€} the number of dedicated inputs plus the number of HOs
28, I there are ten inpuis (o a GAL16VE, what is the maximum pumber of available outputs?

30. What is the largest single SOP jom that can be imp) I with a GAL16VE in terms of the
number of varisbles and the number of product terms? Assurme that only one output is used.

31. PAL emulation with a GAL16Y8 can be achieved by programming the device in any one of three
modes, What are these modes?

32. Determine the GALI6VE mode configuration for each combination of “cell” values.
() SFN =0,4C0 = 1LXOR =1
(b) 5¥N = 1,LACH = 0,XOR =0
33. Besides the flip-flop and logic gates, what other type of device is used in an OLMC?
34, Explain what a global cell is.

SECTION REVIEWS
Introduction to Programmable Logic Devices (PLDs)
1. Programmable logic device
2. Simple PLD
3. Complex PLD
4. Field-programmable gate array
5. A CPLD has a much higher logic capacity than an SPLD.
6. Schematic entry, text-based entry
7. Hardware description language
8. VHDL and Venlog HDL
9. VHDL

Simple Prog ble Logic D (SPLDs)
1. Four types of SPLDs are PROM, PLA, PAL, and GAL.
2, In o PLA, both arrays are programmable. In a PAL, only the AND array is programmable,

3. A PAL is one-time be; a GAL is rep ible and has prog: ble output
sections.
Programmable Array Logic (PAL)

L. A PAL is an SPLD with a programmable AND array and a fixed OR array,

2, The fusible link is the programmahble element in an armay.

3. Any combinational logic can be implemented with a PAL within the limitations of available inpats
and outputs.

4. Three types of PAL output logic are inational cutput, inati 140, and prog
polarity output.

5. A PALIZHG6 is a PAL that has 12 inputs, including [/Os, and 6 active-HIGH outputs.

ANSWERS TO ODD-NUMBERED

PROBLEMS

Chapter:1
1. Digital can be transmitted and stored more efficiently
and reliably,
3. (=) 11010001 () 0D0101010
. (a) 550 ns {b) 600 ns
{e) 2.7 ps d) 10V
7. 250 Hz 9. 50%
11 Bps; | ps 13, AND gate
15. An IC is an electronic circuit with all components inte-
grated on a single silicon chip,

w

17.
1 [} o [16
H) 1s
30 14
40 113
5 0 112
6] 1 n
7 [w0
5 1 9

Chapter2

L {a) | (h) 100 {e) 100,000

3. (=) 400; 70; 1 (b} 9000; 300; 50; 6
(e} 100,000; 20,000; 5000; 0; 0; 0

5. (m) 3 (b) 4 () 7 (d) 8 (e) &
i 12 g 11 (h) 15

7. (@) 51.75 (b) 42.25 (e} 65.875
(d) 120625 (e) 9265625 (N 113.0625
(g} 90625 (h) 127.96875

9. (a) 5 bits (b) 6bits (c) Gbits
(d) 7 bits (e} 7 bits (f) 7 bits
{g) 8 bits (h) & bits

11. {a) 1010 (b) 10001 (e} 11000
(d) 110000 (&) 111101 (f) 1011101
(@ 1111101 (h) 10111010

13, (a) 1111 (b) 10101 (e} 11100

(d) 100010 (e) 101000 (0 111011
(2) 1000001 (b) 1001001

15 () 100 () 100 fe) 1000
@) 101 (e) 1110 (D) 11000

17, (a) 1001 (b) 1000 (e} 100011
(d) 110110 (e} 10101001 101000
19. (a) 010 (b) 001 (c) 0101

(d) 00101000 (e) DODLOIO () 11110
21 (a} 00011101 (b) 11010101
(e) 01100100 () 11111011
23, qa) 00001100 (b) 10111100
(c) 01100101 (d) 10000011
5 (a) —102 () 4116 (o) —64
27. (a) 010001101 1111000010101 1000000000
(b} 1 10001010 1000001 1000000000000000
29. (a) 00110000 (k) DOO11101
(e) 11101011 {d) 100111110
3L (a) 11000101 (b) 11000000
33, 100111001010
35, (a) 00111000
(b) 01011001
(e) 101000010100
(d) 010111001000
(£) 0LO0000100000000
(f) 1111011000101
(g) 1000101010011101
@35m4 @26 (@ 14

.
(e} 243 (n 23s (g} 1474 (h) 1792
39, (a) 60, {b) 10B, (e) 1BA,
41. (a) 10 (b) 23 {c) 46 (d) 52
(e) 67 () 367 (g 115 (h) 532
(i) 4085
43, (a) 001011 (b) 101111
(€) 001000001
(d) 011010001
(e} 101100000
(f) 100110101011
(g} O01011010111001
(h) 100101 110000000
(i) 001000000010001011
45, (a) 00010000 (b) 00010011
(e} 00011000 (d) 00100001
(€) 00100101 (f) 00110110
(g) 01000100 () 01010111

i} 01101001 () 10011000
k) n 10

47, (a) 000100000100 (b) 000104101000
(<) 000100110010 (d) 000101010000
(e} 000110000110 (1) 001000010000
(g) 001101011001 (h) 010101000111
(1) 0001000001010001

49, (u) 8O by 237 (c) 346 {d) 421
(€} 754 () 800 (g) 978 (h) 1683
) 9018 (J) 6667

51, (a) 000J0100 {b) 00010010
(€} 00010111 (d) (010110
(e} 01010010 (£) 000100001001
(®) 000110010101 (b) 0OOI001001 101001

53. The Gray code makes only one bit change at a time
when going from one number in the sequence to the

neal.
55, (a) 1100 (b) 0011 fe) 10000011110
57, (a) CAN (b)) fe) =

id) # (e) = ins

59. 48 65 6C 6C 6F 2E 20 48 6F 77 20 61 T2 65 2079 6F 75
3F

6L (b} is incorect.

63. (u) 110100100 (b)) OOD0O100L
(e} 101110110
65, (a) 1101000 (b} 0OOODOL
(c) 1000010 (d) OO11O0O0
1. See Figure P-1,
iy By
“tow— LI TLILIL
' [i Voo
: 11 H 11
HIGH
eow LU LML
& FIGURE P-1
3. See Figure P-2,
* FIGURE P-2 £ I ” [::
1 T

ANSWERS TO ODD-NUMBERED PROBLEMS = 553

5. See Figure P-3.

c L I

4 FIGURE P-4

9. See Figure P-5.

& FIGURE P-5

11. See Figure P-6.

4 FIGURE P-é

13. See Figure P-7.

T
LI L S —
c .__._..._..:_1
. i

4 FIGURE P-T

554 w ANSWERS TO ODD-NUMBERED PROBLEMS

15. See Figure P-§.
A UL

S QU] 1 —

4 FIGURE P-8

17. See Figure P-9.

AT L
B '_.!. :L_..-..}_..
R '
LN e
H i [!
o HER | i

i
[
l

4 FIGURE P-9

19. XOR=AB + AB;,OR=A+ 8
21. See Figure P-10.

4 FIGURE P-10

Chapter 4
LX=A+B+C+D 3 X=A+B+C
5 (a) AB=IwhenA =18=1
(b} ABC = | whenA =1, B=0,C=1
) A+ B=0Owhend=0,8=0
(@) A+B+C=0whend = |, F=0,C=1
@ A+B+C=0whenAd=18=1C=0
) A+B=OwhenA =1, B=0
(@) ABC = 1whenA=18=0,C=0

7. (a) C i)
{c) Distributive
9 (a) AB by A+ B

© ABT WA+B+C

1L @ A+B+CRE+F+GIH+T+0)
K+ L+M
b) ABC(C + D) + BC = ABC + BC

13. (a) X = ABCD

© X E.'!
18. See Figure P-11.

b X=AB+C
(d) X¥=(A+8C

a

() X=AR+ AB

C

B) X Al 4 AF ¢ ABC

CE Y

o) ¥=ABC =)

-
B
() X=A+ BT« B+ 1]

A FIGURE P=11

17. (a) A ib) AB {cy €
A (&) AC + BC

19. (8) BD + BE + DF () ABC + ABD
(c} B (d) AB + CD
(e} ABC

21, {a) AB + AC + BC (b) AC + BC
ey AR+ AC

23. (@) Domain:A.B,C_ B
Standard SOP: ABC + ABC + ABC + ABC

ANSWERS TO ODD-NUMBERED PROBLEMS = 555

(b) Domain: A, B, € b
Standard SOP: ABC + ABC + ABC
(¢) Domain: A, B, € T e
Standard SOP: ABC + ABC + ABC
25, (a) 101 + 100 + 111 + 011
(b) 111+ 101 + 001
(e) 111+ 110 + 101
27 (@) (A + B+ OfA +'B + CHA + B + O)
A+B+0O
M A+B+ONA+B+CHA+B+0)
A+B+OA+B+ 0O
©A+B+CHA+B+OA+B+ O
A+B+OA+B+0)
29. (a) SeeTable P-1. (b) See Table P-2.

¥ TABLE P-1 : ¥ TABLE P-2

31. (2) SeeTable P-3. (b) See Table P4,

¥ TABLE P-3 ¥ TABLE P-4

Urheberrechilich geschil

356 = ANSWERS TO ODD-NUMBERED PROBLEMS

33. () See Table P-5. by See Table P-6.

¥ TABLE P-5

¥ TABLE P-&
1 3
H
0 0 0 0 (|
0= N as o
0 0 1 o L:
05 K S Sy 1
0 1 o 0 0
0 1 0 1 0
(e A S| B
S k] 0
Ll ST A O |
L0 S p 0
1y e S B |
(G i M L] o
1 SR e
1 1 0 1 o |
1 1 i S |
1 1 1t 1§
on - b~ 8 |

i 0 (1] (1]
0] 1 0
0 1 o 0
0 1 1 i R
1 0 0 1]
15 o L S
1 1 0 1A
1 1 1 1 .
S
35, See Figure P-12,
+ FIGURE P-12 € b
A8
o | o
o |
n
10|
37, See Figure P-13,
* FIGURE P-13 v
AN _0
W]
ol
"
10|
39, ia) Nosimplification by AC
(c) DF + EF
41. (a) AB + AC
ib) A + 8C

(c) BCD + ACD + BCD + ACD
(d) AB + CD
4. B+C 45 ABCD + CD + BC + AD

4. (@ A+BE+C+DA+B+C+D)
A+B+C+D)
(b) (W + Z)(W + XNY + Z)iX + T)
HA+CHDA+B+OA+B+D)
(B+C+DYA+B+C+D)

ABDE + ABDE + ACDE + ABCD

Chapter 5
1. See Figure P-14.

Eom e

2

A FIGURE P-14

3 (a) X = ABB b)) X=AB+ B
@ X=A+8 (dX=(A+8+AB
(&) X=ABBC (M X=@A+BE+0

ANSWERS TO ODD-NUMBERED PROBLEMS = 557

5 (a) (b 5. (e
| s

0 0 a B 0 0 0 0 0 0 0
0 1 0 0 I 1 i i 1 0
1 0 o 8 1 i 0 0 I il il
1 1 1 i 1 1 1 0 1 1 0
EEEETCET O BUESSreses] | 0 i 0
(© It 1 0 £ 0
1 1 0 i
I 1 1 0

5.0

0 0 0 0
0 0 I 0
o 1 0 0
0 1 1 1
1 0 0 I
1 0 1 1
1 1 [5
1 1 TEr e

T.X=AB+AB=(A+BA+ B
9. See Figure P-15.

b FIGURE P=-15 1
N@ ;ﬁDi ‘
X €
P

() XwAla ©)

fah XAl B
-

—

61 X= AR+ AR

(81 Y= ALBOA = B+ C+)) —D_D)_D !
- € —

11. See Figure P-16. p NsAl+C
.—_‘3)

L FIGURE P-16

558 = ANSWERS TO ODD-NUMBERED PROBLEMS

13 X = A fc} X=ABD + CD+E
15. {a) No simplification M X=A+B+D
(b) No simplification (€} X=ABD + CD+E
©) X=4 () X=AC+AD + BC+ BD + EG + EH
@ X=A+F+C+EF+G +FG+FH
(e} X = ABC 19. See Figare P17,
(1) X = BCDE + ABEFG + BCEFG 21, See Figure P-18.
17. (a) X = AC + AD + BC + BD 23. SeeFigure P-19.
b) X = ACD + BCD 25. See Figare P-20.
= FIGURE P-17 A
L]
« X

= FIGURE P-18

A 4
X
' A . o
T ¥ ¥ X "
v < c

(2] Xw ASC) X« ABC [CEEVEY] [CECEEY FY -

4

1

u ¥

o x X
¢

o

i€} X =48 + {0 i

) Xmid+ BUC+ B
—
£
E
&
pou-
igh X = ARICURE + AF) + BCE]

& FIGURE P-19

560 w ANSWERS TO ODD-NUMBERED PROBLEMS

M5B (MSHI
s 1 (Ml 1
1 ' 1
. 1 | —— L '
[1 |._Do.._ 0 1
‘_I" 4 i
(L5 1 o
° A58)
asm
150
fah b oy tdh
IMSE)
0 (MR
INSH) :
11— MER 0 !
[Ip— 1
| o 1
— | i '
h—1l 1= ' 1 !
|— ! ["
— e i s
TLSEY iL5H)
ey in gl [
A FIGURE P-24
" ™ M
[—— I
P B ey S
: — —
VPR R N [S
I
0 e
1
I
T
.
[
e
Vo
4 -
HIGH
3
" Gy Oy oy i, e (e [Gy sy Gy
s — -
HIGH -
7 ‘
'
- '
[l L1 LA T A T

4 FIGURE P-25

27. See Figure P=27.

& FIGURE P-26&

T T
D HHH T

R e B e B e B

4 FIGURE P-2T7

ANSWERS TO ODD-NUMBERED PROBLEMS

= 561

Chapter 7

1. See Figure P-30.

CTHH R
T

¢

4 FIGURE P-30

3, See Figure P-31.

1

e

I I
Iy nininininininlyty

eI g

& FIGURE P-31

29, See Figure P-28,
S THHHHHH
LI L N ey S N e N N e
5 5 L
5 H :
[P s B T N
[
L —
B e,
] 1 1 1
n, + =i
By H 1
oy T H
B — H
b 1 — [l 1
% H = .
Do i 0 T
Dy v ¥ '
Dy 4 — [
wsp{ ™ H H i
Dha H Hll =
Ty LT
4 FIGURE P-28
M. See Figure P29,
EVEN |
onn i
Salgligigh
a1 144
. 2NN
v L L
ai UL
“ R
“ L
AaE ;
IEVEN | H |_ E
3 3 I}
2000 | H L

A FIGURE P-29

5, See Figure P32,

w ML LN L
e —
" ' JH 1

B e T S

1 1

& FIGURE P-32

7. See Figure P-33.

u"_—l_l. |

e 1 H

4 FIGURE P-33

564 ® ANSWERS TO ODD-NUMBERED PROBLEMS

* FIGURE P-44

» FIGURE P-47

ax LML
H thy]
e L
i } V
1}
e || [L

K

4 FIGURE P-48

21 See Figure P-49 for divide-by- 10,000, Add one more
DIVI0 counter to create a divide-by- 100,000,

* FIGURE P-4%

23, See Figure P-50.

4 FIGURE P-50

100 ke 12 kHz 1 kb
| =y CTEN TCp——CTEN TCp———|CTEN ICpH—— TN TC
CTRDIVIO CTRDIVIO CTRDIVIO CTRDIVIO
[< ,—}E ’—>r ’73'5
ax * . .
1 Mt
[N @ o [
& & (4] I L
&
L o 53 [} it
%
@ @ [L] (2]
MISRY M5 (M5H) iAISEY MSEL
) i i€} an L

o bz

ANSWERS TO ODD-NUMBERED PROBLEMS = 567

A4 FIGURE P-60

Chapter 10
1. {a) ROM (b) RAM
3. Address bus provides for transfer of address code to
memory for accessing any memory location in any order
for a read or write operation. Data bus provides for Ay Ag
transfer of data berween the microprocessor and the A
memory or 10,
5. Bitd Bit 1 Bit2 Bit3
Row 0 1 o]
Row 1 o 0
Row 2 0 0
Row 3 o 0
7. 512 rows X 128 8-bit columns i <
9. A SRAM stores bits in flip-flops indefinitely as long as
power is applied. A DRAM stores bits in capacitors that
must be refreshed periodically 1o retain the data. s
11. See Table P-7. iy
13. See Figure P-61. o,
15, Blown links: 1-17, 19-23, 25-31, 34, 37, 38, 4047, 53,
55, 58, 61, 62, 63, 65, 67, 69 9
17. Use cight 16k > 4 DRAMs with sixteen address lines.
Two of the address lines are decoded 1o enable the
selected memory chips. Four data lines go 1o each chip,
19. 8 bits, 64k words; 4 bits, 256k words AT
21. lowest address: FOD,
highest address: FFFyg 4 FIGURE P-81
23. A hard disk is formaned into tracks and sectors. Each
track is divided into a number of sectors with each sector
of a track having a physical address. Hard disks typically
have from a few hundred to a few thousand tracks.
25. Magnetic tape has a longer access time than disk

¥ TABLE P-T

INPUTS { OUTPUTS
i O,

oo oo

o
1
o

T

7. 20 mW
9. N Vosmins <= Vi

becaitse data must be aceesscd sequentially ather than 11. 0.15V in HIGH state; 0.25 V in LOW state.
randomly. : 13, Gue © 15, 16ns
27. Checksum content is in error. 17, Gate C 19, Yes, Gy
29, (@) ROM2 (b) ROM L {c} AllROMs 2. @ on (b)off (o) off (d) on
23. See Figure P-62 for one possible circuit,
Chapter 11 5. (@) HIGH (b} Floating
1. LSl ic) HIGH (d) High-Z

3. CMOS S tpoy =43 055 by = 105 s 27. (=) LOW (b) LOW () LOW

568 m ANSWERS TO ODD-NUMBERED PROBLEMS

= FIGURE P-62

29, See Figure P-63.

FIGURE P-63

3L () R, = 19812
(b) R, = 1982
(c) K, = 196 02

33 ALVC
35 (a) A, BwX: 9908
CDwX: 66ns
b) Ato X, Xz, Xy: 140

BoX;:Tes
CmXyeTns
Do Xy Tos
€ AwX: Il as
BuwoX: 111 ns
CwX: Tdns
DwX: Tdns

TLHCLDS (Tristale)

—

Chapter 12
1. ABEL, CUPL
3 X =ABX;=ABX,=AB
5 X=ABC + ABC + ABC
7. () 16 inputs. 2 active-LOW outputs
() 12 inputs, 6 active-HIGH outputs
fe) 10 inputs, B programmable-polarity outputs
) 16 outputs, R is an illegal designation, 6 outputs,
9. X=ABC+AC+BHC+ B
11. Compater, software compiler, programmes
13, Final logic equations, JEDEC file, pinout diagram
15. JEDEC file is a final output file,

17. TDI—Test data in, TINO—Test data out, TCK—test
clock, TMS—Test mode select

37, ECL operates with nonssurated BITs. 19, An E'CMOS cell

GLOSSARY

ABEL Ad JBocl:an P Language; a
lang for SPLD p ing: a

type of hurdware description language {}IDL}
access time The time from the application of a valid
memory address to the appearance of valid output data.
addend In addition, the number that is added to
another number called the augend.
adder A logic circuit used to add two binary numbers,
address The location of a given storage cell or group
of cells in a memory; a unigue memory location con-
taining one byte.
address bus Generally, 2 one-way group of cunduc-
tors from the microp 1o memory, i
the address information.
adjacency Characteristic of cells in a Karnaugh map
in which there is a single-variable change from one cell
1o another cell next to it on any of its four sides.

Iph i¢ Consisting of 1s, letters, and
other characters.

In a pulse fi the height or maxi-
mum value of the pulse as measured from its low level.
analog Being conti or having conti values,
as opposed to having a set of discrete values.
analog-to-digital converter (ADC) A device used to
convert an analog signal to a sequence of digital codes.
AND A basic logic operation in which a true (HIGH)
output occurs only if all the input conditions are true
(HIGH).
AND gate A logic gate that produces a HIGH output
only when all of the inputs are HIGH.
ANSI American National Standards Institute,

hi The internal functional 1= of
the elements that give a device its particular operating
characteristics,
array Ina PLD, a matrix formed by rows of product-
term lines and columns of input lines with a program-
mable cell at each junciion.
ASCH American Standard Code for Infi
Interchange; the most widely used alphanumeric code.
associative law In addition (ORing) and multiplica-
tion { ANDing) of three or more variables, the order in
which the variables are grouped makes no difference.
asynchronous Having no fixed time relationship; not
occurring at the same time.

asynchronous counter A type of counter in which
each stage is clocked from the om;murfﬂnpm:eﬁng
stage.

augend In addition, the number to which the addend
is added.

base One of the three regions in a bipolar junction
transistor.

BCD Binary coded decimal; a digital code in which
each of the decimal digits, 0 through 9, is represented
by a group of four bits.

BEDO DRAM Burst extended data output dynamic
random-access memory.

bidirectional Having two directions. In a bidirectional
shift register, the stored data can be shifted right or lefi.
binary Having two values or states; describes a nom-
ber system that has a base of two and utilizes 1 and 0
as its digits.

binary seq Binary numb ing in order.
BIOS Basic input/output system; a set of programs in
ROM that interfaces the [/O devices in a computer
system,

bipolar Having two opposite charge carriers within
the transistor structure.

bistable Having two stable states. Flip-flops and
latches are bistable multivibrators.

bit A binary digit, which can be eithera 1 or 0.

bit time The interval of time occupied by a single bit
in a sequence of bits; the period of the clock,

BJT Bipolar junction transistor; a semiconductor
device used for switching or amplification. A BIT has
two junctions, the base-emitter junction and the base-
collector junction,

Boolean addition In Boolean algebra, the OR opera-
tion.

Bonlm algebra The rna:h:nw.ws of Iognr: circuits,

1l An of and
operators used to express the operation of a logic
circuit.

Boolean multiplication In Boolean algebra, the AND
operation.

buffer A circuit that prevents loading of an input or
output.

bus A set of interconnections that interface one or
more devices based on a standardized specification.

byte A group of eight bits.

cache memory A relatively small, high-speed mem-
ory that stores the most recently used instructions or
data from the larger but slower main memory,
capacity The total number of data units (bits, nibbles,
bytes, words) that a memaory can store.

carry The digit generated when the som of two binary
digits exceeds 1.

carry generation The process of producing an output
carry in a full-adder when both input bits are 1s.
carry propagation The process of rippling an input
carry to become the output carry in a full-adder when
cither or both of the input bits are 15 and the input
carry isa l.

cascade To connect “end-to-end™ as when several
counters are connected from the terminal count ourput
of one counter to the enable input of the next counter.
cascading Connecting the output of one device to

the input of a similar device, allowing one device to
drive another in order to expand the operational
capability.

CCD Charge-coupled device; a type of semiconductor
memory that stores data in the form of charge packets
and is serially accessed.

CD-R CD-Recordable; an optical disk storage device
on which data can be stored once.

CD-ROM An optical disk storage device on which
data are prestored and can only be read.

CD-RW CD-Rewritable; an optical disk storage on
which data can be written and overwritten many
times,

cell An area on a Karnaugh map that represents a
unique combination of variables in product form; a
single storage element in a memory; a fused cross
point of a row and column in a PLD; a single storage
element in a memory.

character A symbol, letter, or numeral,

circuit An arrangement of electrical and/or electronic
compenents interconnected in such & way as to per-
form a specified function.

clear An asynchronous input used to reset a flip-flop
(make the @ output 0): to place a register or counter in
the state in which it contains all Us.

clock The basic timing signal in a digital system; a
periodic waveform in which the interval between
pulses equals the time for one bir.

GLOSSARY = 571

CMOS Complementary metal oxide semiconductor;
a class of integrated logic circwits that is implemented
with a type of field-effect trunsistor.
code A set of bils anangﬁd ina umque pattern and
used 1o ref such i bers, letters,
and other symbols.
collector One of the three regions in a bipolar
transistor.
binational logic A bination of logic gates
interconnected to produce a specified Boolean
function with no storage or memory capability;
sometimes called combinatorial logic.
combinational mede The mode of an OLMC in
which a combination logic function is implemented.
law In addition (ORing) and multiplica-
tion (ANDing) of two variables, the order in which the
varizbles are ORed or ANDed makes no difference.
comparator A digital circuit that compares the mag-
nitudes of two quantities and produces an output indi-
cating the relationship of the quantities.
complement The inverse or oppesite of 2 number; in
Boolean algebra, the inverse function, expressed with a
bar over the variable. The complement of a 1 is a0,
and vice versa.

counter A digital circuit capable of counting

electronic events, such as pulses, by progressing

through a sequence of hinafy states.

CPLD Complex programmable logic device.

LUPL Compller for Universal Programmable I.oglc.
1 for PLD a

type of hardw:ue d.escnpnon language.

current sinking The action of a circuir in which it

accepts current into its output from a load,

current sourcing The action of a circuit in which it

sends eurrent out of its output and into a Joad.

DAT Digital audio tape; a type of muagnetic tpe
format.

data Information in numeric, alphabetic, or other
Torm.

data bus A bidirectional sct of conductive paths on
which data or instruction codes are transferred into the
microprocessor or on which the result of an operation
or computation is sent out from the microprocessor.
data selector A circuit that selects data from several
inputs one at a time in a sequence and places them on
the output; also called a muluplexer,

exponent The part of a floating-point number that
represents the number of places that the decimal point
(or binary point) is 10 be moved,

Tall time The time interval between the 9E: point and
the 10% point on the negative-going edge of a pulse.
fan-out The number of equivalent gate inputs of the
same family series that a logic gate can drive,

FET Field-effect transistor.

FIFOQ First in-first out memory.

flash memory A nonvolatile read/write random-
access semiconductor memory in which data is stored
as charge on the floating pate of a certain FET.
flip-flop A basic storage circuit that can store only
one bit at a ime; a synchronous bistable deviee,
Moating-point number A number representation
based on scientific notation in which the number con-
sists of an exponent and 4 mantissa.

floppy disk A magnetic storage device; o flexible disk
with a dinmeter of 3.5 inches and a4 storage capacity of
1.44 Mbyies encased in a rigid plastic housing,
forward bias A voltage polarity condition that allows
a semiconductor pr junction in o transistor or diode to
conduct current,

FPGA Ficld programmable gate array: a type of PLD,
consisting of an array of logic blocks with programma-
ble row and column interconnecting channels sur-
rounded by programmable 10 blocks.

FPM DRAM Fast page mode dynamic random-access
memory.

frequency (f) The number of pulses in one second for
a periodic waveform. The unit of frequency is the
henz.

full-adder A digital circuit that adds two bits and an
input carry o produce @ sum and 20 oulpul carry,

fuse The programmable element in certain types of
PLDs; also called a fusible link.

GAL Generic array logic: an SPLD with a reprogram-
mable AND array, a fixed OR array, and programmuable
output logic macrocells.

gate A logic circuit that performs a specified Jogic
operation, such as AND or OR: one of the three
terminals of a field-effect wansistor.

glitch A voltage or current spike of short duration,

usually uni ¥] and

global cell A programmable cell in an SPLD array
that affects all of the OLMCs when programmed.

GLOS5ARY = 573

Gray code An unweighted digital code characterized
by a single bit change between adjacent code numbers
i a sequence,

half-adder A digital circuit that adds wo bits and
produces a sum and an output carry. [t cannot handle
input carries.

hard disk A magnetic disk storage device: typically,
a stack of two or more rigid disks enclosed in a sealed
housing.

hardware The circuitry and physical components of
system (us I to the directions called

a I
software).
HDL Hardware description language, ABEL and
CUPL are examples.

hexadecimal Describes o number system with a base
of 16,

high-Z The high-impedance state of a tristate circuit
in which the output is effectively disconnecied from
the rest of the circuit.

hold time The time interval required for the control
levels to remain on the inputs 1o a flip-flop afer the
triggering edge of the clock in order to reliably activate
the device.

hysteresis A characteristic of a threshold-triggered
circuit, such as the Schmitt trigger, where the device
wms on and off at different input levels.

IEEE Institnte of Elecirical and Electromic Engineers.
'L Integrated injection logic; an IC technology.
increment To increase the binary state of a ¢ unter by
one.

input The signal or line going into a circuit; a signal
that controls the operation of a cireuit.

input file The i ion entered in a comy that
deseribes a logic design using a PLD programming
language such as ABEL or CUPL; the part of an ABEL
program that decl logic descripti

and test veetors.

In-system programming A method for programming
SPLDs after they are installed on a printed circuit
board.

integer A whole number.

integrated circuit (IC) A type of circuit in which all
of the components are integrated on a single chip of
semiconductive material of very small size.

interfacing The process of making two or more elec-
tronic deviees or systems operationally compatible
with each other so that they function properly wgether.

574 w GLOSSARY

inversion The conversion of a HIGH level to a LOW
level or vice versa; also called complementation.
inverter A NOT circuit; a circuit that changes a HIGH
1o a LOW or vice versa,

Jaz cartridge A magnetic storage device; hard disks
encased in a rigid plastic cantridge with storage capaci-
ties of 1 Gbyte or 2 Ghytes,

JEDEC Joint Electronic Device Engineering Council;
the type of output file for programming SPLDs.
JEDEC file A Juint Electronic Device Engineering
Council software file generated from the compiler
software that is used by o programming device to
implement a logic design in an SPLD; also called a
fuse map.

J-K flip-flop A type of flip-flop that can operate in
the SET, RESET, no-change, and toggle modes.
Johnson counter A type of register in which a
specific prestored pattermn of 1s and Os is shifted
through the stages, creating a unique sequence of

bit patterns,

JTAG Joint test action group; the 1EEE Std. 1149.1
standard interface for in-system programming.
Jjunction The boundary between an a region and

a pregion in a BIT

K gh map An of cells ref 2
the combinations of literals in a Boolean expression
and used for a systematic simplification of the expres-
sion.

latch A bistable digital circuit used for storing a bit,
latency period The time it takes for the desired sector
1¢ spin under the head once the head is positioned over
the desired track of a magnetic hard disk.

LCD Liguid crystal display.

teading edge The first transition of a pulse.

least significant bit (LSB) Generally, the right-most
bit in a binary whole number or code.

LED Light-emitting diode.

LIFO Last in-first out memory, memory stack,

literal A variable or the complement of a variable.
load To enter data into a shift register.

local cell A programmable cell in an SPLD array that
affects individual OLMCs when programmid.

logic In digital electronics, the decision-making capa-
bility of gate circuits, in which a HIGH represents a
true and a LOW rep a false one.

logic array block (LAB) A group of macrocells that
can be interconnected with other LABs or 1o other VOs
using a programmable interconnect array; also called

a function block,

logic element The smallest section of logic in an
FPGA that typical ins an LUT, iuted logic,
and a flip-flop.

look-ahead carry A method of binary addition
whereby carries from preceding adder stages are antici-
pated, thus eliminating carry propagation delays.

51 Large-scale integration; a level of fixed-function
IC complexity in which there are 100 to 9999 equiva-
lent gates per chip.

LUT Look-up table; a memory configuration that is
programmed to perform logic functions,

macrocell A section of logic in a CPLD that includes
an AND array, a product-term select matrix, an OR
gate, and a programmuable register section.
magneto-optical disk A storage device that uses elec-
tro-magnetism and a laser beam to read and write data,
magnitude The size or value of a quantity.

mantissa The magnitude of a floating-point number,
master-slave Dip-flop A type of fip-flop in which the
input data are entered into the device on the leading
edge of the clock pulses and appear at the output on the
trailing edge. Master-slave flip-flops have, for the most
part, been replaced by edge-triggered types.

memory array An aray of memory cells arranged in
rows and columns.

minimization ‘The process that results in an SOF or
POS Bool pression that ins the fewest pos-
sible terms with the fewest possible literals per term.
minuend The number from which another number is
subtracted.

modulus The number of unique states that a counter
will sequence through.

MOS Metal-oxide semi tor; a type of
technology.

MOSFET Metal-oxide semiconductor field-effect
fransistor.

mast significant bit (MSB) The left-most bit in a
hinary whole number or code.

MS1 Medium-scale integration; a level of fixed-
functivn IC complexity in which there are 12 to 99
equivalent gates per chip.

multiplexer (MUX) A circuit (digital device) that
switches digital data from several input lines onto a
single output ling in a specified time sequence.

multiplicand The number that is being multiplied by
anather number,

multiptier The number that multiplies the
multiphicand.

multivibrator A class of digital circuits in which the
output is connected back to the input (un arrangement
called feedback) o produce either two stable states,
one stable state, or no stable states, depending on the
configuration.

NAND gate A logic circuit in which a LOW output
oceurs only if all the inputs are HIGH.

ive-AND An equivalent NOR gate operation in
which the HIGH is the active input when all inputs are
LOW.

gative-OR An equivalent NAND gate operation in
which the HIGH is the active input when one or mone
of the inputs are LOW,
nibble A group of four bits.
NMm An h. 1 atal id 2 d
node A common connection point in a circuit in
which a gate output is connected to one or more gate
inputs,
nolse immunity The ability of a circuit (o reject
unwanted signals.
noise margin The difference between the maximum
LOW output of a gate and the maximum acceptable
LOW input of an equivalent gate; alzo, the difference
between the minimum HIGH output of a gate and the
winimum HIGH input of an equivalent gate,
nonvolatile A term that describes a memory that can
retain stored data when the power is removed.
NOR gate A Jogic gate in which the output is LOW
when any or all of the inputs are HIGH
NOT A basic logic ion that f

numeric Related to numbers.

octal Describes a number system with a base of eight.
odd parity The condition of having an odd number of
1s in every group of bits.

OLMC Output logic macrocell; the part of a GAL
that can be prog: i for either combinational or
registered oulpuls: a block of logic in a GAL that
contains a fixed OR gate and other logic for handling
inputs and/or outputs.

open-collector A type of output in a logic circuit in
which the collector of the output transistor is left dis-
connected from any intemal cireuitry and is available

GLOSSARY = 575

for extemal connection; normally used for driving
higher-current or higher-voltage loads.

OR A basic logic operation in which a true (HIGH)
output occurs when one or more of the input conditions
are true (HiGH).

OR gate A logic gate that produces & HIGH output
when any of the inputs 1s HIGH.

output The signal or line coming out of a circuit.
overflow The condition that ocours when the number
of bits in 4 sum exceeds the number of bits in cach of
the numbers added.

PAL Programmable armay logic; an SPLD with a pro-
grammable AND array and a fixed OR array with pro-
grammable output logic,

parallel In digital systems, data occurring simultane-
ausly on several lines: the transfer or processing of
several bits simultaneously,

parity In relation to binary codes. the condition of
evenness or oddness of the number of 1s in a code
group,

parity bit A bit anached to each group of information
hits to make the total number of 15 odd or even for
every group of bits.

period (T) The tine required for a periodic i
to repeat itself.

periodic Describes a waveform that repeats itself at a
fixed interval.

PLA Programmable logic array: an SPLD with pro-
grammable AND and OR arrays.

PLCC Plastic leaded chip carrier; an SMT package
whose leads are tumed vp under its body in a J-type
shape.

PLD Programmable logic device,

PMOS A p-channel metal-oxide semiconducior,
positive Jogic The system of representing a binary |
with a HIGH and a binary 0 with a LOW.

power dissipation The product of the de supply
voltage and the de supply current in an electronic
circuit; the amount of power required by a circuit
preset An asynchronous input used o set a flip-flop
(make the ¢ output 1),

priority encoder An encoder in which only the
highest value input digit is encoded and any other
active input is ignored.

product The result of a multiplication.

product-of-sums (POS) A fonn of Boolean expres-
sien that is basically the ANDing of ORed terms,

578 = GLOSSARY

variable A symbol used to represent a logical quantity
that can have a value of | or 0, usually designated by
an italic lemer.

VLSI Very large-scale integration; a level of IC com-
plexity in which there are 10,000 to 99,000 equivalent
gates per chip.

volatile A term that describes a memory that loses ils
stored data when the power is removed.

weight The value of a digit in a number based on its
position in the number.

word A complete unit of binary data.

word capacity The number of words that a memory
can store.

word length The number of bits in a word.
WORM Write once-read many; a type of optical
storage device.

write The process of storing data in a memory.

aero suppression The process of blanking out leading
or trailing zeros in a digital display.

ZIF socket Zero insertion force socket; a type of
socket used in most programmers that accepts a PLD
package.

Zip disk A type of magnetic storage; a flexible disk
with a capacity of 100 Mbytes housed in a rigid plastic
cantridge about the size of a floppy.

Index

ABEL (advanced boolean expression
language), 370

Acvess lime, 399, 412, 434

ADC (analog-to-digital converier), 2

Addend, 35

Adder, 203, 208218

Adder expansion, 215

Addion, 203

Address, 391

Address multiplexing, 403
Address register, 393
Adjacency, 145

Alphanumeric codes, 56
Amplitude, 4

Analeg, |

AND armay, 505, 513

AND gate, 10, E2-85, 508
AND-OR, 113
AND-OR-Tnven, 174
AMNSUIEEE, 72

Antifuse, 305, 540
Architecture, 506

ASCIL 57-60

Associative laws, 120171
Asynchronous, 281, 305
Asynchronous counter, 305312
Asynchronous SRAM, 395-399
Augend, 15

Auto parking control system, 347

Base, 475

Baseline, 4

BCD (binary coded decimal), 51.53, 231,
e

addition, 52
counter, M9-310, 316, 119
decoder, 227

BEDD DRAM 407
Biased exponent, 33
Bidirectional counter, 32{-174
Bidirectional shift register. 368-371
BiMOS, 487
Binary, 3, 236
adder, 2013, 208-218
addition, 24, 35,212
counter, 305-311, 313317
datz, T
decoder, 222
digit, 1 18
division, 40

fraction, [9, 33
information. &
multiplication, 25
rumber, LE:21
point, 19
subtraction, 24. 1
Binary digit, 3, 18
Bipolar, 453, 475
Bit, 3, 18,391
Bit time. &
BIT (hipolar junction transistor), 453, 475
Bode, George, 9
Boolcan alpehea BL, 119-16]
addition, 91, 119

associative laws, 120121
commutative laws, 120-121
deMorgan’s theorems, 125.129, 185
distributive-law, 120121
domain, 135
expressions. B, §6, 91, 98, 103,
141-143, 161, 178
Taws, 120121
multiplication, 86, L2
mules, 122-125
simplification [21-§34

Boolean analysis, 179110

Borrow, 24

Buffer, 484, 509, 523

Burst, i)

Bus, 397

Byte, 12, 301

Cascaded counter, 333-336
CCD {charge coupled device), 431
CD {compact disk), 2

CD player. 2

CD-R. 438

CD-ROM, 436

CD-RW, 438

Cell, 144, 391, 408

Cell adjacency, [45, 160

Cell map, 517

Checkboard pattern, 441
Checksum, 440

Chip, L1

Clear, 281

Clock, &, 273, 283

CMOS. 453-456, 470-475, 487

Code converter, 204, 236.738
binary-io-gray, 237
Gray-to-hinary, 231

Codes, 3,24

Collector, 475

Combinational logie, 172-194

Combinational mode, 522, 529-531

Commutative laws, 120-121

Comparator, 203, 218

Complement, 21, 81, 119, 126

Complex mode, 531

Computer, 517

Contact bounce elimination, 269

Conventional programming, 317

Conversion
BCD-to-hinary, 236
BCD-to-decimal, 57
‘binary-to-decimal, 20
‘binary-to-gray, 54
‘binary-to-hexadecimal, 43
‘hinary-to-octal 50
decimal-10-BCD, 51
decimal-to-binary, 21:23
decimal-to-hexadecimal, 45
decimal-to-octal, 48
Gray-to-binary, 35
hexadecimal-to-binary, 43
hexadecimal-to-decimal, 44
octal-in-binary, 49
octal-to-decimal, 48

Count-down chain, 334

Counter, 207, 293, 304-345
asynchronous, 305-312
cascaded, 333-336
decade, 309-311, 316, 319
synchronous, 313131
up/down, 1124

Counter decoding, 336-339

CPLD {complex PLDY), 303-504, 533.936

Carrent sinking, 468, d3

Current sourcing, 468, d&1

DAC (digital-to-analog converter), 3
DAT (digital audio tape), 435

Data, T

Drata bus, 392

Data register, 303

Data sclector, 205, 238246

Data sheet, 459460

Data storage, 190, 155

Data ransmission system, 230

580 = INDEX

DC supply voltage, 456, 461

Decade counter, 309-310, 316, 319

Decimal numbers, 17-18, 22, 30

Decimal-to-binary conversion, 21-23, 30

Decoder, 204, 222-231
address, 392-393
BCD-to-decimal, 227
BCD-t0-7-segment, 229
binary, 223
counter, 336-339
A-line-1o-16-line, 224
Seline-do-10-line. 227

DeMorgan's iheorems, 125-129, I8S

Demultiplexer (DEMUX), 205, 247-248

Dependency notation, 241

Design, 324

D flip-flop, 278, 355

Difference, 36

Digital. 1

Digital clock, 340

Digital codes, 54-68

Digital waveform, 4

DIMM, 425

DIP (dual in-linc package), 11-12

Disk, 432

Distinctive shape symbol, 79, 82, 88,
93,99

Distributive law, 120-121
Dividend, 40

Division, 40, 204

Divisor, 400

D latch, 271

DLT (digital linear tape), 436
Documentation file, 519
Domain. 135

Don’t care condition, 154
Daouble precision, 33

Drain, 420

DRAM, 394-395, 401407
Dual gate symbaols, 187
Dty cycle, 5

DVD (digital versatile disk) 438
Dynamic input indicaer, 273

ECL temitter-coupled logic). 453,
4RR-489, 492 -
Edge-triggered flip-flop, 273-285
EDO DRAM, 395, 406
E'CMOS, 459490, 507, 514, 533, 539
EEFROM, £08, 416, 418419
Emitter, 475
Enable 87, 271
Encoder, 204, 231-235
decimal-to-BCD, 231
keyboand, 235
ity, 233
EFROM 407, 414. 416, 418419
Equality, 218
Erase, 418
Error correction, 61-68
Error detection, 61-6%

Even pasity, 61

Exclusive-NOR, 105-107, 177
Exclusive-0OR, 103-104, 107, 176
Expoaent. 33

Extended ASCII. 59

Extendesd precision, 33

Falling edge. 4

Fall time, 4

Fan out, 457, 467

Fast page mode DRAM, 395, 403, 06

Feedback, 267

FET (ficld-effect transiston), 414, 453

FIFO (first in-first out), 426

Fixed-function logic, 453

Flash memaory, 416420

Flip-flop, 206, 273-295, 325-326

Floating gate, 416, 400

Floating-point numbsr, 32, 34

Floppy disk, 434

Flow chart. 439-440

Flow-through SRAM, 399

FPGA (field-programmiahle gate amvay),
S03-504, 537-542

Fracticnal number, 23

Frequency, 5, 289

Frequency division, 291, 334

Full-adder, 209 539

Full-modulus cascading. 335

Function table, 214

Fuse map, 517

Fusible link, 303, 509, 511

GAL (generic array logicl, 303, 507,
513516, 520-532

GAL numbering, 516

Gate, 9. 470

Gated latch, 271-272

Glitch, 251-253, 338

Global cell, 5332

Ciray eode, 54

Half-adder, 208

Hamming code. 63-68

Handling precautions, CMOS, 474
Hard disk, 432-434

HDL. {hardware description language). 504
Henz, 5

Hexadecimal addition, 45
Hexzdecimal numbers, 42-48
Hexadecimal subtrction, 46
High-Z state, 473

Hold ume, 289

IEEE sid. 754-85, 33
IEEE sad, 1076-1993, 504

Input, 10
In-system programming {15P), 319

Integer, 32

Integrated circuirs, 11-12, 453482
Integraed circuit packages. 11
Iniernal carry, 213

Intrusion detection, 92

Tnvalid code, 51

Inversion, 79, 186

Inverter, 10, 79-E1

Jar, 434

JEDEC file, 517-520
I-K flip-flop. 279
Johnson counser, 371
JTAG, 519-520
Junetion, 475

Kamaugh map, 146-162. 326
Keyboard encoder, 380

LAB (logic block array), $33, 540
Lamp test. 230

Laser, 436

Latch, 266-273

Latency period, 434

Leading edge, 4

LED (light emitting diodc), 484
LIFO {last in-first our), 428
Literal, 119

Loading, 467

Local cell, 532

Logic, 910, 202.207

Logic block, 503, 53

Logic diagram, 176

Logic element, 538, 540

Logic function generator, 243
Logic level, 3, 457, 462463
Look-ghead carry adder, 213
LS8 ileast significant bit), 19
LSD ileast significant digit), 45
150 {large scale integration), 453
LUT (hook-up table), 337

Mucrocell. 533535
Magmetic sworage, 432-438
Magnetic tape, 435
Magneto-optical disk, 436
Magnitude, 203
Mantissa, 32
Mask ROM, 408
Master-slave flip-flop, 285-287
Memary, 207, 390-443
dynamic, 394-395, 401-407
flash, 416420
magnetic, 432438
random access, 207, 384-407
read only, 207, 393, 407412
stane, 395-401, 419, 539
Memory address, 392
Memory array. 391, 396-367
Memory capacity, 302
Memory cell, 301, 408

Memary expansion, 420-426
Memaory testing, 438

Metal link, 413

Microprocessar, 451

Minimization, 146, 149, 155
Minvend. 36

Modulus, 309

MOSFET, 433, 470

MOS memary, 395, 407

MSBC most significant bir), 1Y

MSI {medium scale integration), 453
Mutiplexer {mux), 205, 238-246, 343
Multiplicand, 38

Mubiplication, 38, 204

Multiplier, 38, 204

Multivibrator, 267

NAND gate, 93-98, 183-188, 471, 476
Negation indicator, 79
Negative-AND. 100, 189

Negative logic, 3

Negaive-OR, 95, 187

Mext-stute thble, 325

Nibhle, 213, 101

NMOS, 453

Noise immumity, 463

Noise margin, 464
Nondestructive read, 393
Nenperiodic, 5

Nenvolatile memory, 393

NOR pate, 98-103, 183-185, 189
NOT operation, 11, TR-79

Octal purmbers, 48-50

Odd parity, 61

OLMC (output logic macrocell), 515-516,
50-532 -

Open collector gate, 477, 452, 434

Open drain gate, 473

Optical storage, 436-438

OR array, 305

OR gate, 10

Ounput, 10

Overflow, 36

Page mode, 404

PAL (programmable areay bogic), 503,
506-513

PAL emulation, 529

PAL numbering, 514

Parallel adder, 211-218

Parallel data, 9, 290, 343

Paralkel-to-serial conversion, 343

Parity, 61-68, 249

Parity gencratosfchecker, 248-251

Partial decoding, 309

Partial product, 65

Period. 5

Periodic, §

FIA (programmable interconnect armay),
pxi

Pin numbering, 11

Pipelined SHAM 399

Pipclining, 399

PLA (programmable logic array), 303,
Si-507

PLD (programmabile logic device),

PLI} programuming, 517-570

PMOS, 483

Folarity indictor. 79

Puop operation, 430

Positive logic. 4

Pestponed output symbol, 286

Power dissipation, 456, 465

Powers-of-ten. 17

Powers-of-two. 21

Preset, 281

Priority encoder, 233

Product. 38, 204

Product-of-sums (POS), 137, 141, 155156

Product term, 120, 136

Programumable array, S04

Progrummer, 414, 215

Programiming. 414, 417, 504, 517920

PROM. 407, 41 2416, 503, 506

Propagation delay time, 288, 307, 313,
435, 458, 466

Public address system, 2

Pull-up resistor, 235, 482

Pulse, 4

Pulsed operation, 54, B9, 94, 99, 105,
191-194

Pulse train, 5

Pulse triggering, 285

Pulse width, 5, 289

Push operation, 479

QIC (quarter-inch cantridge). 435
Quantization, 2

Quiscent power, 436

Quotient, 40, 204

RAM {random access eamory), 207,
304407

RAM stack, 429

Read, 392-393, 397, 417

Readfwrite cycle, 397, 404

Readfwrite head, 432

Real number, 32

Rectangular outline symbol, 79, B2, K8, 95,
i

Recyele, 306

Refresh, 395, 405

Register, 2, 355

Registered mode, 522, 528

Register stack, 428

Remainder, 22, 204

Removable drive, 434-415

INDEX = 581

Repeated division-by-2 method, 22

Repeated mubiplication-by-2 method, 23

Reset, 267

Ring counter. 373

Ripple blanking. 230

Ripple-carry adder, 213

Ripple counter, 107

Rise time, 4

Rising cdpe, 4

ROM (read only memory), 207, 393,
07412, 418

Schottky, 479

Sector, 433

Seck time, 434

Semiconductor, 207, 391

Serial data, 9. 343

Serial-to-parallel conversion, 337

Set, 267

Set notation, 267

Set-up time, 288

Seven-sagment display, 220, 242

Shatt encoder, 55

Shift register. 206, 354-332

Shift register counter, 371375

Shoned junction, 413

Sign bit, 29, 33

Signed binary numbers, 29-41

Sign-magnitude, 20-30

Silicon link, 413

SIMM, 425

Simple mode. 579

Single precision numbers, 33

Software, 414

SOP (sum-of-products), 135, 141, 147,
203, 514, 527, 534, 538

Source, 470

Speaker, 2

Speed-power product, 457, 467

SPLD (simple programmable logic
device), 30%-5017

SRAM (static RAM), 394-401, 419,
539-540

5-R flip-Nlop, 274

SR luwch, 267

551 (small scale imegration), 453

Stack, 428, 433

Stack poimer, 430

Stage, 356

State diagram, 324

State imachine, 324

Static memaory, 395200, 419, 539

Storage, 206, 395

Strobing, 253

Subtractor, 204

Subtraction, 24. 36, 204

Subtrahend, 36

Sum, 35, 208

Sum-of-weights, 21

Sum term, 119, 139

582 = INDEX

Supply voliage, 416, 461
Switching speed, 435, 458

Synchronous DRAM‘. 395,407
Syntax, 51K

Tape, 435
Terminal count, 333
Tied-together inputs, 486

Time delay, 375

Time division multiplexing, 206
Timing diagram, £0. 305
Toggle, 219

Totem-pole output, 484

Track, 433

Trailing edge, 4

Transition tabie, 325

Tristate logic, 396, 473, 478, 523

Truncated sequence, 309, 335

Truth table, 19

TTL {transistor-transistor kogic,) 453, 458,
461, 463, 475485

UART {universal asynchronous receiver
transmifier). 378

ULSH (ulbra large scale integration), 433

Unit load, 457, 469

Universal gate, 1£]-182

Universal shift regisier, 370

Unused input, 485

Upjdown counter, 3261324

LY EPROM 407, 414

Variable 119

Verilog, 304

VHDL, 304

VLSI (very large scale integration), 453
Volatile memory, 393

Viing system, 218

Waveform, 4-6, 80

Weight, 17.21

Wired-AND, 482

Word, 391

Word-capacity expanston, 424
Word-length expansion, 420

WORM (Write once-read many) disk, 436
Write, 392193, 207

Zero suppression, 230
ZIF socket, 318

Zip, 434

8421 code, 51

1"s complement, 27-29, 31
2's complement, 29-32

Il!ﬂ t?amentals Floyd & Jain

E | G H T H E D I T I O N

The best-selling text, recognized as the authority on the fund, tals of digital syst

for nearly a quarter of the century, provides complete, up-to-date coverage from the

basic concepts to the programmable logic devices. The book completely covers a

semester course on Digital Fundamentals offered to undergraduate students of I
engineering. Previous knowledge of digital theory and electronics is not a pre-requisite
for reading the text. Emphasis has been given to the modem approach followed in
industries for the design of digital systems.

Salient Features

+ Flash memory, magnetic and optical storage devices

<+ Programmable Logic Devices (PLDs), Complex Programmable Logic Devices
{CPLDs) and Field Programmable Gale Arrays (FPGAs)

+ Error detection and correction codes

+ 317 review questions and 178 self-test questions, with answers

+ 178 solved examples supplemented with related problem

+ 410 practice problems. Answers to all the odd-numbered problems

Instructors resources available at
-

Premieri2
HH Il

This edition is in India and is for sale only L AL L
in India, Bhutan, Pakistan, Nepal, S+ Lanka and the Maldives. mmmn ‘

